CS-3160 Concepts of Programming Languages Spring 2015

EXAM #1 (Chapters 1 - 6)

Multiple Choice Responses

Each multiple choice question in the separate packet is worth 3 points. There is no partial credit in this section. Choose the **<u>BEST</u>** answer of those given. Please indicate your answer by **<u>DARKENING</u>** the response that you have chosen **in the space provided below**. Make your selection obvious. Don't forget to mark your answers <u>on this sheet</u>. Only answers indicated below will be graded.

1. a b c 🔵 e	6. b c d e	11. a b c 🗨 e	16. a b c d	21. a b c 🔵 e
2. a • c d e	7. a • c d e	12. a b d e	17. b c d e	22. a b o d e
3 a h d e	8 a h c d	$13 \circ h$	18 2 9 c d e	$23 \frown h c d e$
4. a ● c d e	9. a b c ● e	14. a ● c d e	19. ● b c d e	24. b c d e
5. b c d e	10. a b 🔵 d e	15. a b c d	20. a c d e	25. a b • d e

Problem #1 (15 pts)

Consider the following grammar:

The operator semantics are the usual ones and are given in the table below. Circle the appropriate precedence (1 is highest) and associativity.

operator	name	example	Precedence	Associativity
+	addition	6 + 2 = 8	12345	LR
-	subtraction	6 - 2 = 4	$(1)_2$ 3 4 5	LR
*	multiplication	6 * 2 = 12	12345	LR
/	division	6 / 2 = 3	123 4 5	LR
۸	exponentiation	6 ^ 2 = 36	1 2 3 4 5	D R

Draw the parse tree, starting from \mathbf{S} , for the following expression:

Problem #2 (10 pts)

A grammar consists of three binary operators and single-digit integer literals. The precedence and associativity are shown in the following table.

operator	Precedence	Associativity
#	1	R
@	2	L
\$	3	R

Develop a set of productions (BNF or EBNF) that reflects this grammar.

<dollar> -> (<at> | <at>\$<dollar>)

<hash> -> (<int> | <int>#<hash>)

<int> -> one of {0,1,2,3,4,5,6,7,8,9}