CS-3160
Concepts of Programming Languages
Spring 2015

EXAM \#1

(Chapters 1-6)

Name:

SCORES
MC: \qquad /75 PROB \#1: \qquad /15 PROB \#2: \qquad /10

TOTAL: \qquad /100

Multiple Choice Responses

Each multiple choice question in the separate packet is worth 3 points. There is no partial credit in this section. Choose the BEST answer of those given. Please indicate your answer by DARKENING the response that you have chosen in the space provided below. Make your selection obvious. Don't forget to mark your answers on this sheet. Only answers indicated below will be graded.

1. a b c e	6. b c de	1. a b	16. a b c	1. a b c e
2. $\mathrm{a} \bigcirc \mathrm{c} d \mathrm{e}$	7. a c de	12. a b de	17. b c d e	22. a b $\mathrm{d} e$
3. $a \mathrm{~b} \bigcirc \mathrm{de}$	8. a b c d	13. $a \mathrm{~b} \bigcirc \mathrm{de}$	18. a c d e	23. b c d e
4. $\mathrm{a} \bigcirc \mathrm{c} d \mathrm{e}$	9. a b c e	14. $\mathrm{a} \bigcirc \mathrm{c} \mathrm{de}$	19. b c d e	24. b c d e
5. b c de	10. a b ${ }^{\text {d }}$ e	15. a b c d	20. a c de	25. a b $\mathrm{d}^{\text {d }}$

Problem \#1 (15 pts)

Consider the following grammar:

```
S ->(A | S `^` A )
A -> ( B | B (`*'|`/') A )
B -> ( C | C (`+'|'-`) B )
C O one of {0,1,2,3,4,5,6,7,8,9}
```

The operator semantics are the usual ones and are given in the table below. Circle the appropriate precedence (1 is highest) and associativity.

operator	name	example	Precedence	Associativity
+	addition	$6+2=8$	(1) 2345	L (R)
-	subtraction	$6-2=4$	(1) 2345	L (R)
*	multiplication	$6 * 2=12$	$1(2) 345$	L (R)
1	division	$6 / 2=3$	1 (2) 345	LR
\wedge	exponentiation	$6^{\wedge} 2=36$	12 (3) 5	(L) R

Draw the parse tree, starting from \mathbf{S}, for the following expression:

What is the value of this expression? 64

Problem \#2 (10 pts)
A grammar consists of three binary operators and single-digit integer literals. The precedence and associativity are shown in the following table.

operator	Precedence	Associativity
$\#$	1	R
$@$	2	L
$\$$	3	R

Develop a set of productions (BNF or EBNF) that reflects this grammar.
<dollar> -> (<at> | <at>\$<dollar>)
<at> -> (<hash> | <at>@<hash>)
<hash> -> (<int> | <int>\#<hash>)

$$
\text { <int> -> one of }\{0,1,2,3,4,5,6,7,8,9\}
$$

