
HW14 Problem Set

CS-3020

Assignment

Instructor Assigned

HW14-1: (Instructor Assigned #A)

Design an abstract class Heap and two concrete classes, StaticHeap and DynamicHeap, that inherit

from it. The public interface required by the Heap class is as follows:

Heap(count=0, type=Heap.MINHEAP): Creates a heap that can hold “count” items and places the

minimum value at the root of the heap. The alternative is Heap.MAXHEAP which places the maximum

value at the root of the heap.

Remove(value): Finds ‘value’ in the heap and removes it. Throws a HeapEmptyException if the

heap contains no data and a ValueNotInHeapException if the heap is not empty but does not

contain the requested value.

Add(value): Adds ‘value’ to the heap. Throws HeapFullException if the heap cannot accept any

more data.

Pop(): Removes the value presently at the root of the heap and returns it.

Capacity: Returns the total amount of data the heap is currently able to hold.

Count: Returns the total amount of data presently stored in the heap.

Peek: Returns the value presently at the root of the heap.

The three properties are read-only – the user cannot assign values to these properties.

The DynamicHeap must be able to grow, if possible, when more data is added than it can presently

hold.

The StaticHeap must be given a fixed size at instantiation, the default of which is 255 elements.

You may implement the DynamicHeap any way you choose and performance is not a factor in your

grade. However, your StaticHeap should be designed for performance and this will affect your grade.

HW14 Problem Set

CS-3020

HW14-2: (Instructor Assigned #B)

Design and implement class RunningHeap which inherits from Heap and implements the

IRunningStatistic interface (which you are to define). The interface has the following public

elements:

Flush(value=0.0): Sets all of the values in the data structure to the specified value.

New(value): Adds a new value to the data structure, removes the oldest, and returns the new value of

the running statistic.

Value(n): Returns the value of the nth most recent data value. Value(0) returns the most recent value.

Bit(n): Returns True if the nth most recent data value is above the present threshold, False otherwise.

Threshold: Returns the current value of the running statistic.

The property is read-only – the user cannot assign values to these properties.

The constructor for RunningStatistic should take two arguments:

RunningHeap(size = 1048576, percentile = 66.7)

The size (defaults to 2
10

) is the total amount of data that can be stored in the structure. This need not be

adaptable. The percentile is the ranking of the value that serves as the threshold. A value of 66.7 means

that 66.7% of the data presently in the heap is less than or equal to the threshold value while the

remainder is greater than or equal to the threshold value.

Grading Rubric

Each problem is worth 10 pts (score will be recorded as a percentage of that amount)

10% Properly submitted

10% Properly named

20% Adequate comments

10% Runs

20% Produces correct output

30% Effort evidenced by the submitted work

