
HW #01

CSCI-400 Spring 2013

The purpose of this assignment is just to familiarize yourself with some of the less commonly

used (for many programmers) aspects of the C programming language that will be useful later in

this course.

Your program will read the text from the input file and either encrypt or decrypt it, as determined

by the mode, using the cipher key provided. You will use a Vigenere cipher, which is described

later in this document. Remember that the goal of the assignment has nothing to do with

cryptography, this is just a vehicle for exploring some C language aspects. Thus, some of the

instructions for this program may seem a bit forced, largely because they are.

Your program will take up to four command line arguments. The first is the name of an input

text file, the second is the name of the output text file, the third is the cipher key and the fourth is

the mode. If the mode is omitted, then it is to be assumed that the mode is to encrypt the file. If

the cipher key is omitted, then a default key of “Colorado School of Mines” is to be used. If the

output file is omitted then the output is to be directed to the screen. The user is required to supply

an input file – if they don’t, issue an appropriate error message and terminate the program.

Output, to the screen, the command, with arguments, that was used to launch the program.

Output, to the screen, all four parameters that will be used.

The encryption/decryption process will only be concerned with the letters of the alphabet and

will be case-insensitive. The input text (to be encrypted, known as the plaintext) can be any

ASCII text file, meaning it may have upper/lower case letters, numbers, whitespace, punctuation,

etc. Your program will ignore everything except upper/lower case letters. It will encrypt them

(described later) and output the encrypted text (the ciphertext) in groups of five uppercase

characters. When decrypting, the ciphertext should be groups of five letter characters, but your

program will accept anything (just like the plaintext) and only consider the letters it finds (be

they uppercase or lowercase).

Once the information is processed (i.e., encrypted or decrypted), your program will output some

statistics about the data. Regarding the input file, it will output the total number of characters in

the file as well as the total number of lines. It will then break this down as the number of total

number of letters, number of uppercase, lowercase, digits, whitespace, and all else (punctuation

and control codes). You will do the same for the output file. You may format this however you

like, but it should be neat and easy to understand.

Your program is to read and process the input file one character at a time, including producing

whatever output is appropriate. Your program may not use scanf() or any of its variants; instead,

use fgetc() and similar functions to get input. Your program may not use any of the string or

ctype library functions.

You are to write a function called LoadKey() that will accept a pointer to the string containing

the key. This function will return a pointer to a block of dynamically allocated memory that

HW #01

CSCI-400 Spring 2013

holds a sanitized copy of the key. The key is sanitized by removing everything except letters and

converting all letters to uppercase. If the user did not supply a key on the command line, then a

NULL pointer is to be passed to the function and the function is to use the default key (which is

to appear in your code listing as shown above, namely a mix of upper/lower case letters with

spaces).

The actual encrypting and decrypting uses the relation C = P + K (mod 26), where C is the

ciphertext character, P is the plaintext character, and K is the key character. Each letter, A-Z, has

a value of 0-25 respectively. The characters are first converted to their values, the above relation

is used to solve for the desired variable, and that value then converted back to a character. So, for

instance, when encrypting ‘Y’ from the plaintext with the ‘D’ from the key, these are first

converted to 24 and 3 respectively. Adding these yields 27 which is then reduced modulo 26 to

yield a final value of 1. Converting this to a character results in ‘B’. When decrypting this, the

‘B’ and ‘D’ would be converted to 1 and 3, they would then be subtracted (since now we are

using P = C – K) to get -2 which, when reduced modulo 26, yields 24, thus eventually resulting

in the character ‘Y’.

The first character of the plaintext/ciphertext is encrypted/decrypted with the first character of

the key. The second character of the input uses the second character of the key, and so on. If the

end of the key is reached, the process continues by going back to the first character of the key.

Your program is expected to explicitly free memory and close files as appropriate and not to

simply let these happen automatically when the program closes.

Your source code file should be named CS400_USERID_HW01.c where ‘USERID’ is replaced

with your CSM Mines E-Mail Username (which should be the same as your ADIT Username).

Then zip this file (even though it is a single file – later homeworks will involve more than one

file) using the same file name, except with a .zip extension. You may include a Readme.txt file if

you wish. If you chose to use user-defined header files or additional source code files, please

name them in a similar fashion and include them in your zip file.

RUBRIC – 40 pts

10 - Command line parameters are processed properly

10 – LoadKey() function works per specification

5 – NULL pointer checks are made where appropriate

5 – Dynamic memory is allocated and freed properly

5 – Files are opened and closed properly

3 – Statistics are done properly

2 – Encryption/Decryption are done properly

