
 

COLORADO SCHOOL OF MINES 

ELECTRICAL ENGINEERING & COMPUTER SCIENCE DEPARTMENT 

 

CSCI-410 

Elements of Computing Systems 

Spring 2014 

 

PY-04 

 

The primary goal of this assignment is to familiarize you with Python dictionaries. To do this, 

you will implement a disassembler that takes HACK files and produces an annotated assembly 

code listing, which you should also find useful as you implement your own assembler.  

Output File Format 

The output of the disassembler should be a legal assembly language file that has the same name 

as the HACK file but with a .dis extension (to avoid overwriting the original .asm file should it 

be in the same directory). This file need not have a header (since it is not one of the extensions 

that the Header class will recognize). The format of each line should be as follows: 

assembly_instruction // address: 0xHEXA machine_instruction  

See the example listing at the end of this document for reference. 

The assembly instruction should be a legal instruction using the following format for C-type 

instructions: 

[AMD=]OPC[;JMP] 

Since this file is primarily for debugging purposes, it is helpful for each part of the instruction to 

be in well-defined fields (columns) in the listing. Thus, the dest will consist of three characters, 

{AMD}, in that order in columns 1-3 with each character being replaced by a space as 

appropriate. The equals sign, if any, will be printed in column 5. The OPC is the instruction 

mnemonic, which is never longer than three characters. It should be left justified starting in 

column 7. If a jump field is present, the semicolon should be located in column 12 and the three-

character jump mnemonic starting in column 14. 

For A-type instructions, the format should be 

@ integer 



   

 

2 

 

The ‘@’ symbol should be in column 5 (i.e., the same column as the C-type instruction’s ‘=’ 

symbol) with the decimal integer left-justified (no leading zeros) starting in column 7 (i.e., 

directly above the C-type instruction’s OPC mnemonic). 

Each line should be followed by a comment that gives the instructions address, the hexadecimal 

representation of the instruction, and a parsed version of the machine instruction itself. The 

comment delimiters should start in column 21. The address should be printed, following a single 

space, as a five-digit integer with leading zeros followed immediately by a colon (which should 

place the colon in column 29). Following a space, the four-digit uppercase hexadecimal 

representation of the instruction (with leading zeros, if needed) should appear surrounded by 

square brackets (this should place the closing square bracket in column 36. 

The remainder of the comment, following a single space after the hex representation, is a parsed 

version of the machine instruction. While the details of the parsing depend on the type of 

instruction, both types require twenty characters which should place the last character on the line 

in column 57. 

The two formats for the machine instruction are as follows: 

A-Type: 0 xxx xxxx xxxx xxxx 

C-Type: 111 a cccccc ddd jjj 

The Main, FileSet, and Util classes 

The Main, FileSet, and Util classes for this project are already written for you. You may modify 

FileSet and Util to suit your purposes, but you are to use the Main class untouched. Note that the 

grading script will may replace the one in your submission ZIP file with a clean copy. 

If you use these classes untouched, then do not alter their headers, either. But, if you do modify 

one of them, update the header with your information, put a disclaimer comment after the header 

indicating that it is a modified file based on one provided to you (similar to the disclaimer in the 

HDL files), and indicating what the modifications were.  

Dictionaries 

You might be asking how dictionaries fit into all of this. To disassemble the C-type instructions, 

you will use three dictionaries, one each for the dest, the comp, and the jump fields. The dest and 

jump dictionaries will have eight entries while the comp dictionary will have twenty-eight. 

Simply put, the keys to the dictionaries will be the binary patterns read from the machine code 

file and the values retrieved will be the mnemonics. 



   

 

3 

 

You will implement two new classes in Python for your disassembler: Parser and Code. The 

Parser object is given an input stream (in other words, open a .hack file and pass the file object to 

the Parser’s constructor). The Parser reads lines from the input file and provides information 

about the line such as what type of instruction it is, what the address is, and what the various 

fields are. 

It might be useful to note that the Parser object knows about the hardware architecture in so 

much as how it parses the machine instructions, but it knows nothing about the assembly 

language format. The Code object, on the other hand, knows how assembly language mnemonics 

are mapped to bit sequences, but it does not know how those bit sequences are put together to 

form a complete machine instruction. This partitioning would make it possible to use a different 

assembly language with the same hardware platform or the same assembly language with 

different hardware platforms, provided the two were reasonably compatible. For instance, it 

would not be too hard to imagine a HACK with a 32-bit wide data path that simply used 32-bit 

wide instructions for convenience and organized the bits within the instructions differently. 

Alternatively, it would be quite reasonable to implement a more traditional assembly language 

style that still targets the HACK platform. Both of these are actually quite common in the 

embedded microcontroller world given the high number of variants on the same basic platform 

as well as several different assembly language “camps” that exist. 

Command Line Format 

Subject to the specifics of how you need to invoke Python scripts on your platform, the 

command line usage should be: 

prompt> unHack (filename|directory) 

As before, the user will do one of the following actions: 

1) From within the directory containing the file, run the program passing it a filename (including 

extension). 

2) From the directory immediately above the files to be modified, run the program passing it the 

directory name. The program will then work through all of the .hack 

There are no command line options for this project. 

  



   

 

4 

 

Invalid Instructions 

There are two types of invalid instructions. The first are instructions that are neither A-type nor 

C-type. Any instruction that begins with a leading 0 bit is an A-type instruction, but only 

instructions that begin with three leading 1 bits are C-type instructions. Any instruction that does 

not fall into one of these two categories is an invalid instruction type. 

The second type of invalid instructions are those that are C-type instructions but which do not 

map to valid computation mnemonic. While these are not valid in a strictly conforming sense as 

far as the defined assembly language instructions are concerned, they are, in fact, valid 

instructions as far as the Hack hardware is concerned. Thus, you will generate a new type of 

computation mnemonic, called an ‘X’ instruction, which consists of three characters. The first is 

the letter ‘X’ and the last two are the zero-padded, uppercase hexadecimal digits corresponding 

to the seven bits in the instruction. 

Static Methods 

A method that can be called independent of any instance object of that class is known as a “class 

method” and the proper way to declare such a method is as a static method as follows: 

class Fred: 

 

 @staticmethod 

 def aStaticMethod(arguments): 

  … 

  

def anInstanceMethod(self, arguments): 

  … 

 

Notice that static methods not only are preceded by the “@staticmethod“ decorator. In 

addition, they do not include the initial implied “self” argument. To call a static method you use 

the name of the class instead of the name of an instance object of that class. 

  



   

 

5 

 

Parser class specification 

Routine Arguments Returns Description 

constructor file (stream) 

 

-- Prepares to read the .hack file 

bound to the stream. 

hasMoreInstructions -- Boolean True if more instructions are yet 

to be processed. 

advance -- -- Make the next instruction the 

current instruction. 

address -- integer Returns the address of the 

current instruction. 

instruction -- string Returns the entire instruction as 

a sixteen bit string of ‘0’ and ‘1’ 

characters. 

hexInstruction -- string Returns the instruction as a four 

digit hexadecimal value. 

parsedInstruction -- string Returns a string the represents 

the instruction parsed 

appropriately for its type. 

instructionType -- “A_TYPE” 

“C_TYPE” 

“INVALID” 

Returns the type of the 

instruction. 

value -- integer Returns the integer value 

associated with an A-type 

instruction. 

dest -- string Returns the instruction fragment 

associated with the destination 

field of a C-type instruction. 

comp -- string Returns the instruction fragment 

associated with the computation 

field of a C-type instruction. 

jump -- string Returns the instruction fragment 

associated with the jump field 

of a C-type instruction. 

 

As you can see, only the constructor takes an argument. All other functions work with the current 

instruction (or, in some cases, relative to the current instruction). Here are more detailed 

requirements for each public method in the Parser class. 

constructor  

The argument is a file (or stream) object for the machine code file (the .hack file) 

containing the machine instructions to be disassembled. 



   

 

6 

 

hasMoreInstructions  

This method returns True if there are still more instructions to be disassembled. 

advance 

Makes the next instruction the current instruction. 

address 

This method returns the address of the current instruction. The address of the first 

instruction is 0 and instructions are stored at sequential addresses thereafter. 

hexInstruction 

This method returns the four-digit string corresponding to the zero-padded hexadecimal 

representation of the current instruction. All alphabetic digits are uppercase. 

parsedInstruction 

This method returns the 20-character parsed representation of the current instruction. 

A-Type: 0 xxx xxxx xxxx xxxx  C-Type: 111 a cccccc ddd jjj 

Invalid: xxxxxxxxxxxxxxxx 

instructionType 

This method returns the type of the current instruction using one of the following strings: 

“A_TYPE”, “C_TYPE”, or “INVALID” 

value 

This method returns the integer value loaded by an A-type instruction. 

dest 

This method returns the three-bit string encoding the destinations in the order {A, D, M}.  

comp 

This method returns the seven-bit string encoding the computation as {a c1…c6}.  

jump 

This method returns the three-bit string encoding the jump conditions as {LT, EQ, GT}.  



   

 

7 

 

Code class specification 

Routine Arguments Returns Description 

a_type integer string Returns an entire A-type instruction. 

c_type dest (string) 

comp (string) 

jump (string) 

string Returns the entire C-type instruction 

given the three mnemonics that define 

it. 

destMnemonic dest (string) string Returns the destination mnemonic give 

the three-bit pattern that encodes it. 

compMnemonic comp (string) string Returns the computation mnemonic give 

the seven-bit pattern that encodes it. 

jumpMnemonic jump (string) string Returns the jump mnemonic give the 

three-bit pattern that encodes it. 

invalid_type -- string Returns “*** INVALID ***” 

 

Note that the Code class has no constructor; in fact, you do not instantiate objects of the Code 

class at all. Like the Util class, it contains static class methods. 

Here are more detailed requirements for each public method in the Code class. 

a_type 

This method returns the A-type instruction that loads the given integer.  

c_type 

This method returns the C-type instruction corresponding to the three components given.  

destMnemonic 

This method returns the destination mnemonic given the three-bit string that encodes it.  

compMnemonic 

This method returns the computation mnemonic given the seven-bit string that encodes it. 

If the string does not map to a valid mnemonic, then it should return “XHH” where HH is 

the two-digit, zero padded hexadecimal representation of the seven-bit string.  

jumpMnemonic 

This method returns the jump mnemonic given the three-bit string that encodes it.  

Invalid_type 

This method returns the string “*** INVALID ***”.  



   

 

8 

 

Example Output File 

The following is the disassembler output for file mult.hack from ECS-04. 

    @ 1             // 00000: [0001] 0 000 0000 0000 0001 

  D = M             // 00001: [FC10] 111 1 110000 010 000 

    @ 4             // 00002: [0004] 0 000 0000 0000 0100 

 M  = D             // 00003: [E308] 111 0 001100 001 000 

    @ 2             // 00004: [0002] 0 000 0000 0000 0010 

 M  = 0             // 00005: [EA88] 111 0 101010 001 000 

    @ 3             // 00006: [0003] 0 000 0000 0000 0011 

 M  = 1             // 00007: [EFC8] 111 0 111111 001 000 

    @ 3             // 00008: [0003] 0 000 0000 0000 0011 

  D = M             // 00009: [FC10] 111 1 110000 010 000 

    @ 28            // 00010: [001C] 0 000 0000 0001 1100 

      D    ; JEQ    // 00011: [E302] 111 0 001100 000 010 

    @ 0             // 00012: [0000] 0 000 0000 0000 0000 

  D = D&M           // 00013: [F010] 111 1 000000 010 000 

    @ 20            // 00014: [0014] 0 000 0000 0001 0100 

      D    ; JEQ    // 00015: [E302] 111 0 001100 000 010 

    @ 4             // 00016: [0004] 0 000 0000 0000 0100 

  D = M             // 00017: [FC10] 111 1 110000 010 000 

    @ 2             // 00018: [0002] 0 000 0000 0000 0010 

 M  = D+M           // 00019: [F088] 111 1 000010 001 000 

    @ 3             // 00020: [0003] 0 000 0000 0000 0011 

  D = M             // 00021: [FC10] 111 1 110000 010 000 

 M  = D+M           // 00022: [F088] 111 1 000010 001 000 

    @ 4             // 00023: [0004] 0 000 0000 0000 0100 

  D = M             // 00024: [FC10] 111 1 110000 010 000 

 M  = D+M           // 00025: [F088] 111 1 000010 001 000 

    @ 8             // 00026: [0008] 0 000 0000 0000 1000 

      0    ; JGE    // 00027: [EA83] 111 0 101010 000 011 

    @ 28            // 00028: [001C] 0 000 0000 0001 1100 

      0             // 00029: [EA80] 111 0 101010 000 000 

 


