

COLORADO SCHOOL OF MINES

ELECTRICAL ENGINEERING & COMPUTER SCIENCE DEPARTMENT

CSCI-410

Elements of Computing Systems

Spring 2014

PY-02 (rev. 1)

In this assignment, we will step aside from the Header tools for a moment and focus on working

with a computer’s file system in a way that is (hopefully) platform independent so that your

Python scripts can run on Windows or *nix. We will also tackle processing command line

arguments and performing file I/O.

We will limit ourselves to a pretty narrow scope that matches the scope needed for the ECS

programming assignments later in the course. As such, we may not always do things in the most

efficient or elegant way.

The goal of this project, which is admittedly quite contrived, is quite straightforward. We want to

have our program run from the command line as follows:

prompt> py02 source level

Where prompt is the command prompt, source is either a file name (with extension) or a

directory name, and level is an optional flag that indicates what information will be in the

output report.

For simplicity, we will require that directories not contain any periods and that filenames only

contain one. This is not a necessary restriction, merely one that we choose to impose to make our

lives easier.

To focus us a little better, we will use the Project 12 directory as our test directory. The best way

to do this is to copy the entire directory into your PY02 directory. If you examine this directory

you will see that it contains several .jack files as well as several directories. What we will do if

write some Python scripts that will let us process these files either individually or as a group.

You will not do very much with the files – the objective of this assignment is pretty well met if

you are simply able to locate and access the files. So, depending on the command line options

supplied by the user, you will either simply list the filenames that are found or list the filenames

along with the number of lines and/or characters in the file.

2

FileSet class specification

Routine Arguments Returns Description

constuctor filename (str),

ext (str)

-- Builds a set/list of all the files that

match the filename/extension

parameters.

baseName -- basename Returns the basename.

hasMoreFiles -- Boolean True if more files yet to be processed

nextFile -- filespec (str) Returns name of next file and

removes it from the set/list of

unprocessed files.

report -- -- Outputs a summary to the screen.

The table above uses the same format as the class specifications given in the ECS projects, so

this should help you get familiar with them. Furthermore, you will be able to use this class in

your ECS projects to deal with handling your input files so that you can deal with processing

them. Note that these functions are the public functions – you may add private functions at will.

Note that the report method in the FileSet class is NOT the method you will use to generate

the report asked for in this assignment. This class serves a narrowly defined purpose, namely it:

• Determines if the user supplied a specific filename or the name of a directory.

• Builds and maintains the set of files that the user wishes to process.

• Furnishes the file specifications to the user one at a time.

• Provides a means for the user to tell if there are more files yet to process.

• Allows the user to generate a simple report of the files in the set.

You will use a second class, FileScanner, (described later) to process the files and prepare the

final report.

Except for constructor, your function/method names are expected to use the case as given in

the specification. The constructor in Python must be named “__init__()”, with two

underscore characters before and after the word “init”. Unlike some object oriented languages,

including Jack, the Python constructor takes self as its first argument even though it is not

called by dereferencing an instantiated object -- which it can’t be since its purpose is to construct

the object! How Python does this is that when the class name itself is called as if it were a

function, for instance

myfileset = FileSet(filename, “jack”)

3

Python first allocates memory for the data structure associated with an object of that class and

then passes a pointer to that structure, along with the rest of the explicit arguments supplied, to

the class’ constructor.

Here are more detailed requirements for each public method in the FileSet class.

constructor The first argument is either a filename (e.g., ”apple.jack”), or

a directory name (e.g., ”apple”). The second argument is an

extension (e.g., ”jack”). If the first argument is a filename whose

extension matches the second argument, then the file set will

consist of a single file in the current working directory. If the first

argument is a directory, then the file set will consist of all files in

that directory (which is itself in the current working directory)

having an extension that matches the second argument. If no

matching files exist (or if the named directory does not exist), then

the file set will be empty.

baseName This method returns the filename (w/o extension) or the directory

name in use. For the above example, it would return ”apple” in

either case.

hasMoreFiles The object keeps track of which files in the set have not yet been

processed and returns True if there are still unprocessed files and

False if there are not.

nextFile This function returns the name of the next unprocessed file. Once

this function has been called, the object assumes that that file can

now be considered to have been processed. This function should

not be called unless a prior call to hasMoreFiles() indicates

that there are still unprocessed files.

report This function generates a very simple report that gives the base

name, whether the file set is for a single file or a directory, how

many files are in the set, and what they are. Examples are below.

4

Processing DIRECTORY

Base: 12

Type: jack

Files: 8

 Array.jack

 Keyboard.jack

 Math.jack

 Memory.jack

 Output.jack

 Screen.jack

 String.jack

 Sys.jack

Processing FILE

Base: Array

Type: jack

Files: 1

 Array.jack

Processing FILE

Base: NoSuchFile

Type: jack

Files: 0

In addition to the FileSet class, you are to implement a Util class that will contain a

collection of class functions that we will add to as needed. The first function will be

Util.getCommandLineArg(n)

This function returns the nth command line argument, returning None if appropriate.

The Scanner class

The code for processing the files and preparing the report should be implemented in this class.

The details of how you do this are up to you, but you might consider patterning your approach

after the general outline of the FileSet class. You might also spend some time considering the

approach that is encouraged by the class specifications for the Assembler (Section 6.3), the

VMTranslator (Sections 7.3.3 and 8.3.3), the JackAnalyzer (Section 10.3), and the JackCompiler

(Section 11.3). Look at the common theme that most of the specifications share and see if you

can follow a similar flow.

The os module

Python provides a module named os that has many useful functions in it. For the FileSet class,

the following ones are of particular interest: path.splitext(), path.isfile(),

path.isdir(), chdir(), and listdir(). Other functions in this module allow you to get

the current directory and to build up file specifications using the proper path separator for the

operating system in use.

The sys module

5

This module is useful for system-related activites, including getting the command line

arguments. The class variable sys.argv is a sequence containing all of the elements of the

parsed command line.

Reading text files on Windows and *nix

Text files on Windows machines use separate carriage return and line feed characters while *nix

machines only use the linefeed character. This can cause problems when processing a file on one

machine that might have been written on the other. Since this is common place, Python has a file

mode specifically intended to be able to read either type of file transparently. This mode is “rU”

and is used as the second argument to the open() function following the filename.

Report Format

If no command line flag is provided, default to producing a report in the format represented by

the following example.

==

File Name

--

File1.jack

File2.jack

File3.jack

--

FILES: 3

==

If the level is 1, then the report should include the file size as follows:

==

File Name Size (Bytes)

--

File1.jack 2047

File2.jack 12345

File3.jack 603

--

FILES: 3 14995

==

6

If the level is 2, then the report should include the number of lines.

==

File Name Lines

--

File1.jack 47

File2.jack 45

File3.jack 3

--

FILES: 3 95

==

If the level is 3, then the report should include both the file size and the number of lines.

==

File Name Size (Bytes) Lines

--

File1.jack 2047 47

File2.jack 12345 45

File3.jack 603 3

--

FILES: 3 14995 95

==

The details of the format, such as how long the dividing lines are (not to exceed 75 characters)

and how much white space is between columns, are up to you, but the columns containing values

that are summed should be right-aligned and must be in the left-to-right order shown.

Furthermore, the dividing lines must be as shown in that the first and last are composed of equals

signs while the inner two are composed of hyphens and are located directly above and below the

list of files. If there are no files, then these two lines should be right next to each other.

