
The BXI, works like a T tX if the SEcond operand (in this 
ease 3) is odd; the BXH with an even second ~vrgument 
allows the increment and comparand to be in adjacent 
regist.ers, in this ease 4 aud 5. The Stl. subtraets register 5 
from register 2. C is a fuI1 word comparison which sets 

the condition codE; this example could be modified for a 

halfword ~able by changing (3 to CH and "4" to "2" 

throughout the instructions above. BC branches (>~ eon- 

dition code 6, which is 0110 in binary--.-i.e., first opera.nd 

low or first operand high. 

The timi~g iu this ~.xa.mpl< depend:, ~>~ d~<, ,~o~i(1. (3,~ 
the ),L>d ;~0, th~ (imiugs in microseeouds of the givm~ 
instructions arE: BXI,, ;;S; I;XH, 3SiS l{, 30: ( ' .  SO: BC, 
15. ThE total is 151 nficrose('~u~d, \ si~!{]b' muii it@ i> 
struetion on the Mod ;gt) t~kes 2;~5 mi,.:roa'c(mds. (h~ ~ther 
models the situ0, iiOlt iS R)SS clear,  bl, l[ iD, ttlt} (VeIlb ;~i legist 
five instructions ~re needed: multiply, ma.sk, BXtI ~0 
TFUIA.  C, and B(L Note that ~,> this machine ~ cam~ot 
"enclose" a BXH ~ithi~ :~ comparison tweau,;c ~h~: C 
instruetii:m does not skip, but merely >e{s thv co~dhiot~ 
code. 

Scatter Storage Techniques 
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Scatter storage techniques as a method for implementing 
the symbol tables of assemblers ~and compilers are reviewed 
and a number of ways of using them more effectively ore pre- 
sented. Many of the most useftA variants of ~e  techniques are 
documented. 
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Introduc tion 

This paper is primarily concerned with the appEcation 
of scatter storage techniques to iutemaI tables such as corn- 
prier and a:s~embler symbol tables. Most of ~he previous 
literature oa the subject of scatter storage haas been aimed 
at, the problems of addn~:~sing random access secondary 
storage. The techniques can be applied profitably to any 
table or file in which access is to be made to the entrie~s in 
unpredictable order and the items are idEntifiEd by some 
key a;~soeiated with ~heir contents. 

Conskter the simple e~se of an assembler symbol t~(ble. 
Names which ap~:~ar in location fieMs during a~sernbly are 
given a vab.~e which is the value of the location eourder 
current at, ~te time the lOEation field is encountered. E'his 
value must })e cor~suitzeJ whenever the same name appea~ 
elsewhere in ~he program. The location counter vatue~ are 
aeee:<~ed in unpredictable order and the~ffore must be 
searched R)r at every aeees% each ent~T is as~oeiat.~l with 
a name ,ahieh i~, used ~-~ a key for finding the entry. The 
table could of toutme be kept i~ alphabet.iced order, but 
the be,st :~earch ~eehnique i~ a ~,~rt,~t ~.~ff:)le r~xluires at, k~);sg 
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an average of bg~N pn~hes to tind an item, where 5 i~ 
the size of the table. Thus, for examplE, a taLle ~i~h t024 
entries would require an average of at, least 10 probes to 
find an item by searching. One can do much better 
than this with a scatter storage table. 

A ::',ore important disadvantage of using a soried tans 
in this application is thai; if items need to be lo<,k<d up 
before all of 'the entries art made, then either 

- - the  table must be kept sorted after each entLv is made, 
with tt~e resulting heavy overhead L~r making each entry, 

or 
..... the items must be looked up in an unsorted table 

until all of the entries are made, at the (:<>st of a tre. 
mendo~rs number of probes to tind a~ item. 

I/lash Addressing 

The fundamental idea behind scatter stor:ge is that, the 
key associated with the desired e~try is us~xt to locate the 
Entry in sv)rag< Some transformation is performed on the 
key O.he name, in th< example above) ~o produce a*~ 
addre,ss in the table to hold (he key and the entry asaoci- 
aged with th( key. A go<~J transformation is o~e that, 
sprea.ds *he calculated addremses (>:interlines eaU~:d ha;sh 
addresses) uniformly across the available addresses. If ~he 
calculated address is already filled with some od~er k~y ~nd 
Rs entry because two keys happened to be tra~sformed 
i~t.o the same calculated addr{:~s, a+ method is needed for 
re~olving the collision of keys, a~:t we will diseu,~ :< ver~d 
such methods in what follows. 

tf lhe k(ws are names or o{:her .,.,bjeets th~, fit int.,~ a 
sin.gle machine word, a popular method of get,crating a 
hash address from the k(y is to ehoo:<~ some bi~;~ from the 
middle of the square of the k<y.  e~mugh bii~¢ to be u~.,d 
as an index to addrce~ a~,y item in the table. Sh~e~ the 
value f f  the middle bits of the ~Jquare depen&,~ on alt of the 
bits of the key, we can expect that different keys will give 
rise to different h~.sh addre:~es wi@ high probability, more 
or lea.~ indep~ ~dently of whether the keys ~.~hare ~,m~e eom ~ 



i~ii! 

m(m [eature, say aJl beghmil~g or all e~ding with the same 
l>i(, t m~.I('rm 

]if (he keys art,, muldword items, i~he~l some bits from the 
t)r<)duet of the words making up the key may be satisfac- 
tory as long as care is taken that tile calculated address 
does ~<)t {:tt:['~l out to be zero most o:f tile time. The most 
(bruegel'otis situation in this respect is when blanks are 
ao(bd httcrtmlly as zeros or when partial word items are 
p~d(te, d t<)full word length with zeros. 

A third method of computing a hash address is to cut 
I, he key up into n-bit sections, where n is the number of 
bits ~eeded for tile hash address, and then to form the sum 
of all of these sections. The low-order n bits of the sum is 
used as the hash address. This method can be used for 
sit,tie-word keys as well as for multiword keys. A program 
using this method appears in Appendix A. 

All three of these methods of computing hash addresses 
have been in use for years with satisfactory results, but in 
a new application or on a new computing machine, care 
must still be taken that the computed addresses are 
spread uniformly over the available table space. 

Handling Collisions 

Once some entries have been made into a scatter storage 
table, it becomes possible for tile computed addresses of 
different keys to be the same, causing a collision between 
tile storage locations allocated to each. Some other place 
must be found for one of the items. We will initially assume 
that once an item has been entered it is never moved or 
deleted. So another potential place must be found for the 
new entry. In general, when the table is nearly full, many 
collisions may occur while probing the table for an empty 
sloe. Hence some procedure is needed which generates 
additional calculated addresses until all empty slot is 
found, probing the entire table if necessary. Of course, the 
same procedure for generating additional calculated 
addresses must be used when the item is later looked up. 

In practice, when a scatter storage table routine is 
ealled~ it is not necessary to specify whether an item is 
being entered or being looked up. What is required of the 
l'outine is to determine the address at which the offered 
key belongs and to report whether the key was already 
entered. Then tile calling routine can make the entry or 
extract tile infornmtion, as N)propriate. The procedure, 
then, will be to generate successive hash addresses until 
eneounteri,g either a slot that contains the desired key or 
an empty slot. In tile latter ease, the key is entered in the 
empty slot, if :it is entered at all. 

The possibility that several keys ean generate the same 
calculated address means that the key must be storm in 
the table along with its associated entry. For example, 
when )mmbers are stored in an array, the index in tile 
array uniquely specifies the storage allocated to an item. 
In mt application (such as a sparse matrix) where it is 
know,~ (hat very few elements in the array will actually be 
used, ~)ne might advantageously use the subscript eombi- 
nati(m as a key and compute a lmsh addl~ss from the 

values of the subscripts. The item can then be accessed 
through the hash address. But then the subscripts associ- 
ated with the number must be stored along with the num- 
ber itself. For example, if A(10) were equal to 1.5, then 
the corresponding table entry would most likely be a two- 
word item, one word containing the subscript 10, and the 
other word containing the number 1.5. This is a powerful 
but little-known technique for handling sparse arrays. It 
can greatly reduce the storage requirements at the cost of 
increased programming complexity and longer access time. 
Observe that  this is a useful method for storing arrays only 
when array elements are to be accessed in unpredictable 
order; it would not be a good method if matrix operations 
such as addition or multipheation were to be performed on 
the arrays. 

Many methods of resolving collisions have been sug- 
gested and used, and the particular method to be used in 
a particular application should be chosen earefuUy since 
the method of handling collisions profoundly affects the 
efficiency of the technique and the difficulty of the pro- 
gramming task. 

Table Layout 

In almost every application, an entry in a scatter storage 
table occupies more than one word, typically at least one 
word for the key and at least one word for the data asso~ 
elated with the key. If an entry occupies k words and 
space is required for N entries, then altogether k N  words 
of storage are needed. Two straightforward ways of 
arranging the table are: 

to put each entry into k consecutive words and use 
only hash  addresses that point to the first word of an 
entry, This can readily be done by multiplying each hash 
address by k and using the product as an index in the 
table. 

- - to  divide the table into k sections, each with hr words. 
Tq?n the hash address is used as an index in the first table 

find the first word of an entry and as an index in the 
~ond table to find the second word of an entry, and so 
rth. 
The  only difference between these two methods is one 

programming convenience. In either case, the hash 
~ddress is used as all index in the table and not as an 
ab~;olute storage address. 

Since most hash-addressing schemes produce a number 
of r~ndom bits to be used as an index, it is most convenient 
to use only values of N which are powel~ of 2. For instance, 
if the hash transformation generates 1 bits, one can use the 

~bits as an index in a table with space for N = 2 ~ entries. 
..'Other considerations apply to storage that does not have 
binary addresses. 

There nmst be some way of distinguishing an empty slot 
in the table from any possible vMid entry. For instance, if 
zero can be excluded as a valid key, then a zero key can be 
used to mean that an entry is empty. Of course the entire 
table nmst be initialized to whatever state is being used to 
signal elnpty slots in the table. 
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R a n d o m  P r o b i n g  

An efficient and elegant method of generating successive 
eateuIa.ted address.aes to handle eoltk, dons is as follows: 

1. Calculate an address 7 in the table by using son~e 
transformatinn on the key as an index. 

2. If the item is already at  this address or if the ph~ce is 
empty, the job is done. 

3. I:f some other key is ttx~re, call a pscudorandom 
number generator for an integer offset p, ~ lake. {he 
next probe at  ~ @ p and e:o to step te l  

The pseudonmdom number generator can be of the sim- 
plest sort and usually can be written in tess than six ma- 
chine instructions, t t  must generate es+ery int<eger from 1 to 
N -- 1 (where 37 is the sb:e of the table) exaetty once. 
When the generator runs out. of intege~, the table is full 
and the entry cannot be made. 

The following will serve ~,he purpose as a random num- 
Q~ 

ber generator for tables whose size is Y = z ,  a power of 
two. 

Initialize an integer R to be Equal to 1 ever}" time {he 
~abting routine is called, and then on each suceeasive calt 
for a random number: 

- - se t  R = R * 5 
.... ma~k out all bu t  the tow-order n. + !2 bits of the 

product, and place the result m R, 
- -se t  p = R/4  and return. 
A scatter storage routine using this technique of han- 

dlJmg collisions is given in AppendLx A. The important  prop- 
erey of the pseudorandom number generator in this appli- 
cation is that  for every value of i, the numbe~,  ~+~ -- ~ 
f o r i  ..< i + k < n. - -  1 are all different, where A, is the 
jt.h random number which is generated. 

The efficiency of the random probing method is best ex- 
pressed in terms of the average number E of probes neces- 
sary to retrieve an item in the table. This happens ,to be 
equal to the average number of probes which were required 
to enter the items originally. The nuraber E depends on 
the f~action ce of the table which is <>coupled but not ~>h~ 
the size of the table, tf  Y ix the size of the table, antic<L. 
i ten~ are in the table, ~hen c~ = k/.iV, The expected nm~,  
ber A of probes neeesssary to enter the (k + 1)-st fie,n, 
including the final probe, ix 

~ ": ~ # Y + 5V iY - : - : -U  + ' "  

, z : ( D -  t ) - . - ( i )  
' Nf?~ r ,  - -  1) . . .  ~.~',/'- ~ : +  1) 

:gr 
where the j t h  ~erm in the sum is the probability that j o,. 
more probes are needed t/) eater the item, By induction 
on k (1) can be re~vritten ass 

~ :':~ ~ + Y : : : -TF : :7 :7  

....... : , / ( ,  (,e) 

For large valu<\s of N, we c~ul r{ptace /,: '(A/ l" 1) b> ~ in 
(2) aud .appre×imat< A by 

<1 .... b / ( 1 . . . ~  (a) 

and t.hen E is squat to the avera£e of A f-r v~du~> of l: 
f rom 0 to /,: ..... t. We can approxh,mie ~}~ls awm~g~ 1>3 the 
integral 

S i  ..... -:~r -:~r J,, 7x::::~7 (4) 
(i,}: 

. . . . .  ( l / a )  log (1 ...... e~) 

The approximations theft were made insure that> the ae~,ua, t 
expect<Hi performance is slightly better than is predicted 
by (4). Some sample values of E for various vah.~es of e, are: 

Load factor c~ E 

0. :I 1.05 
0.5 1,39 
0.75 1.83 
0.9 2.56 

The muuber of pn)bes necessary for searching a sorted 
table is greater than this [or all but, the tiniest ~.ables, but 
to make a fair comparison, one must include the extn~ *ime 
it takes to compute a hash address. This method of ha> 
dling collisions is a variant of a method due to Vyssotsky 
{q. 

Deletion of entries made using <his scheme ix a tr,,~uble- 
some process. One cannot simply mark an entry as empty 
in order to delete it because other entries may  have collided 
at ~:hat place and they would become unreachable. The 
h&sh addre~+ses for every entry in the table would have ~o 
be recomputed and some of them mc, vc<{ in order to <:lose 
up the gap caused by the deleted entry,  A much more 
convenient method of dele@)n is to reserve a special signal 
for a deleted entry  (much like ~he special signal for a~ 
empty item). ()n seamhing for a key, the search continues 
if a deieted entry is encountered, A new item can be m- 
smtled in place of any deleted entry encountered in search- 
ing for its proper place. The disadvantage of this method 
is ghat the lookup time is not reduced when entries are 
deteted-~-onty {,he lost space is :reclaimed. 

L i n e a r  P r o b i n g  

The first method of gcneratix~g successive calculated 
addressees to be sugg<sted i~ the literature {2] was simply 
to place colliding entries ~.~ ~ear ~ possible to their nomi.. 
nally allocated position, in the fi)tlowing sere<. Up,ira colli- 
sion, search forward from the nominal positio*~ (the initial 
calEulated address), until either the dex~ired entry is h)und 
or an empty space is encountered,  searching circularly 
p~st the end of the table to the beginning, if necessary. If 
an empI~y space is encounterc;d, that ~4paee becomes; ~,he 
home for the new entry. 

Thin procedure b~ the genN effect;ire s trategy in eommo~~ 
use for r~olving collisions in ~,erme~ of the average number 
of probes required to retrieve an item, The r<~,.s+)n for ffs 
relatively poor efficiency i~ ~.hat af~:er a %w collisinns have 
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bee~ resolved in this way, the e~tries are clumped in such 
a way that;, given thai; a collision has just occurred at  loca- 
t,io:~ l, the probabilil~y of a collision at location l + 1 is 
higher than the average probability over the whole table. 

The ettieiency of the linear probing method can be 
~m~dyzed by techniques shMlar to those used in [3] to 
evaluate a related method. The result is that,  to within 
suitable approximation, the average nmnber E of probes 
rmeessary to look up an item in the table is 

E = (:l - ~ / 2 ) / 0  - ~ ) .  

Sample wdues of E are: 

Load factor a E 

0.1 1.06 
0.5 1.50 
0.75 2.50 
0.9 5.50 

( 5 )  

For vahms of a greater than  0.5, the random probing 
method is distinctly superior. On the other hand, the 
linear probing method is easier to program, and each probe 
beyond the first requires less computation. 

The problem of deleting entries made in the linear 
probing method is similar to the problem for random 
probing. However, in order to close the gap caused by the 
deleted entry, one need consider only those entries be- 
tween the deleted entry and the next empty place in the 
table; no other entries could have collided at  that  spot. If  
a special mark is used for a deleted entry, then the lookup 
time can be reduced as a result of the deletion by looking 
at  the next entry in the table. If that  entry is empty, then 
the deleted entry can also be marked as empty. Moreover, 
the table can then be scanned backwards from that  point 
and every deleted entry marked as empty until an entry 
is encountered that  is not marked as deleted. 

D i r e c t  C h a i n i n g  

At a small penalty in space, another method of resolving 
collisions, called direct chaimng [4], is considerably more 
efficient in terms of number of probes per entry than either 
of the preceding methods. In this technique, part of one of 
the words in each entry is reserved as a pointer to indicate 
where additkmal entries with the same calculated address 
are to be found, if there are any. Thus all of the entries 
with the saine calculated address are to be found on a 
linked list (or chain) starting at that  address. The last 
entry on each chain nmst be distinguished in some way 
(such as having a zero pointer). 

When a key is to be looked tip, its hash address is com- 
puted and then 

~} . . . . .  if that  address is empty,  the key has not been en- 
tered. 

........ if that  address is occupied, search down the chain 
hanging from that  address; if the key is not encoun- 
tered, it is not in the table. 

When a new entry :is to be made, compute its hash 
address and then 

--.if that  address is empW, install the item there. 
- - i f  that  address is occupied by the head of a chain, find 

an unMloeated cell in the scatter table by any tech- 
nique whatever, and piaee the new entry in the newly 
allocated cell. Then insert the new entry into the 
chain hanging from the calculated Mdress. 

- - i f  that  address is occupied by an entry which is not 
the head of a chain, i.e., by an entry which is not at 
its own cMeulated address, then the old entry must be 
moved to another slot and the new entry inserted in 
its place. Moving the old entry requires finding an 
empty slot for it, placing it there, and updating the 
chain it is on. 

The principal disadvantage of this method is tha t  
entries must be moved in storage, with all the program- 
ruing complexity that  this implies. Observe that  when a 
newly entered item is to be placed on a chain, it is usually 
more profitable to place it near the head of its chain rather 
than at the end of the chain. 

An attractive feature of this method is that  when the 
table fills up, new items can be placed in an overflow area 
with no change in the strategy of making entries or look- 
ing them up. Moreover, as we shall see, the efficiency of 
the method is still quite good even after overflow has 
occurred. 

The average number E of probes necessary to find an 
item using this scheme is calculated in [4], and is 

E = 1 + ~ / 2  (6) 

where, as usual, a = k / N ,  k = number of entries, and N = 
number of slots in the table. The formula (6) is still valid 
when a > 1, as will happen when items are placed in an 
overflow table. The efficiency of lookup depends in no way 
on how cells are allocated to items on collision. Some sam- 
ple values of efficiency are: 

Load factor a E 

0.1 1.05 
0.5 1.25 
0.75 1.38 
0.9 1.45 
1.5 1.75 
2.0 2.00 

Formula (6) does not supply a fair comparison with other 
methods for values of a greater than 1, since then space is 
being used outside of the scatter table, bu t  it is not easy 
to say how the comparison should be made in this case. 

A variation on this method [4] decreases programming 
complexity at  only slight cost in storage efficiency. The 
variation is to treat  every item which collides at a calcu- 
lated address as an overflow item to be stored in an over- 
flow table rather thazl in the scatter table itself. This im- 
plies that  items need never be moved in storage once they 
are entered, but  space is used in the overflow area before 
the scatter table is itself full. The only inefficiency caused 
by this variation is storage inefficiency as more space is re- 
quired in the overflow table. However, since there is no 
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ch~dning through the scatter table, the scatter table can be 
smaller. Usually it, is the scatter table ~hi{.?h has rigid 
storage requirements while the overflow table eau be 
got~;en from any ge~eral purpose storage allocator, which. 
may well be present f\)r other m~es, 

The expected amount of overflow space used can be 
ea.lculated as folh>vs: A good appn~ximadoa [5, p. 110] to 
the number of occupied slots in the table ~ffter it: items have 
been entered is iV(1 -- e-'0 where ~, L: a~d ,V have their 
previous meanings. But then, since the total of ¢: items have 
been entered, the number which have overflowed is 
~: -- N(1 -- e-'0. Therefore the total (expected) amount 
of storage that. has been used is 

x(~ + e-9. (7) 

This factor must be taken into account when the two chair> 
ing methods are compared. 

The technique for deleting items entered by chaining i.s 
as follows: 

- - an  entry not stored at its calculated ~vJdress nmy be 
marked empty and its former chain ]oim~t arround it, 

....... an entry stored at Xs calculated address, but with no 
chain hanging from it, may merely be marked empty. 

--.an entry stored at its calculated address with a chain 
hanging from it must eRher be ma:rked as deleted or 
one of the items on its chain must be moved to the 
ealetflated address and the chain properly fixed tip. 

Sca t te r  Index Tables 

It is possible to extend the idea of tmadng every eollkfing 
item as an overflow item, namely, t.o place all entries in a 
separate s~om~ge area in which space is allocated for entries 
only as needc<L TI-mn the scatter ~alole consists only of 
pointers to ~he entries. We will calt such a table a scatter 
index table to emphasize that the seatt:er '{able contains 
not the entries them,:,xJves, but only pointers to the entries~ 
It. is passible to combine ~he idea of a scatter index table 
with any of the three methcds of re:solving eollisio~t% but 
there is seldom rea.son to use anything but the chaining 
method. Once the prog:~mm-~ing arrangemenus have been 
nmde to allocate space as n+:~?dcxt from a free stx/,rage area, 
tt~e ehah:~ing n~ethod is just a,s easy to pr, N:ram ~ the 
other methods, and it is more efficient, 

There are a number of advantages to keeping all of the 
data items in a storage area separate from the tearier 
table. A <:ta~.a item often r~eeupies m~my words, wherea~ a 
pointer usually oceupies only a part of a sir@e word, so 
the unu.~ed portion of the scatter table will eons]/~t of single 
word i~:em.s rather them the mukiword spaces suRabte for 
data i:ems. Beeau:-~ of this, much of the efficiency of t}~ 
chaining method can be regained wRhout havir,g t,o move 
entries aroused in storage~ 

On.ty so much apace ~m, ed be allocated for each entry gts 
is ><.ce~ssary to hold it,, If emtri{xs are kept in the s<mtter 
table, one v, ouId have t,o allocate for each iiern as much 
space as is needed for the Iarg~t of them, Monx)ve:r~ it may 
well m>t be known at the time a key is first eneounteresf 
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how mueh space wil t  be r equ ind  to hoht the ass~daRq 
en { r}% 

Delet,hm of entries is trivial~ ,\> i tem to be <hq< h)d, iS 
simply removed from the chain it is on mid reiurned to 
free stnrage. 

Appendix I3 is a program which uses the mei,hod 0f 
scatter index tables. 

Vir tual  5car te r  Tables 

The time spent searchi~g foc a.n item in a table deperlds 
not ouly on the immber of probes neednd to fii~d the item, 
but also on the time reqtfimd to make a single probe. If 
the keys ~>e as all complex, for instance, if they are eharae. 
ter s~rbb> of varying le{Gth, it. may take s considerable 
amount of thne to find out whether or not two keys are 
the saune. 

For some appticati{?~s, aa attractive method of d(~x'e~. 
big the 4mount of thne needed to make a probe is to com- 
pute a hash address suitable for a much larger scatter 
gable than is actually" bei~g used and then to place the 
extra bits i~:t the entry. For example, if a t024-word scatter 
tM)le is being used and a 20-bit hash addr(x~s is cornputed~ 
then 10 of the bits cam be used to address the table entry 
and the remaining 10 bits placed in the entry Then the 
table can be made to act in some respects as if it wen s 
very lighdy loaded scatter table with 2 :;~ slots. 

W h e n  an entry is being looke/t up, compute its hash 
add~ess as usual and follow whatever collision doctrhe 
[~s been chosen, but instead of compari~g keys, first con> 
pare the e/xtm~ hash bits lust computed with the extra 
hash bits stored in the entries. Only if the extra hash 
bits are the same, need the keys be compared. In J~e e> 
ample above, where twice a;~ many bits were eomput~J] 
as were needed, one could expect more often than ~0t 
that by the t.ime the ruble was filled, no two keys were 
ever compared which turned out to b~ differ(mr. The prob 
ability of two keys having the same hash addr(x~s and the 
same extra hmsh bits is precisely the same ~s the probabil- 
ity that they would collide in the taNer virtual table. 

The expeetc~:t total number of probe.s needed to enter 
2 ~~ items into a table with 9 e° slot;s is eq~ml to 2 u~ f ~ be- 
cause a ...... 2 -~° and %r very lightly loaded gables each d 
the eolli@m doct£nes £iw<s an expeeted average mmj}er 
of probes E -,= I + ~C2. 

A :~teo~:~d application of the idea of virtual sear ~er t ~b!es 
is t,hat it permits a scatter table to be i~crea~<~d h~. size 
during executio~ without rehash, ing all of the key:-~ im 
deed, without rehashing any of the keys~ tn order to d,mbb 
the size of a scatter table, a sir@e pm~s is made through 
the old table and e~tries are placed in the lower or ~pper 
half of the new table depending on whether their lowerr. 
order extm~ hash bit is 0 or I, If collisions were r<~oR'af 
by the linear method or by the ~xmdem megh{M, theu the 
o @ n a t  h ~ h  bi~ r~eed to be kept, im addition to t.he extr~ 
hash bits so that ~I:~e oAginal e~d:cula~:d addrr, x<~ <m be 
reeowx'ed, tf  cotlMoas were rea)bed by ehaini~g, tbm 
thi~ [S U~e{:es~ary. Of eou?s G whets the se,~Gfer t.abie is 



us(:d ~s an index, no d~d;a, items need be moved, only 
i)oin Lets, 

A curious possible use of virtual scatter tables arises 
whe~l ~ hash ~ddress can be computed with more than 
~boul; three times as many bits as are actually needed for a 
calculated address, The possibility tha t  two different 
keys have the same virtuM hash address becomes so re- 
mote that  the keys might not  need to be examined at all. 
t f  ~ new key has the same virtual  hash address as an exist- 
ing entry,  then the keys could be assumed to be the same. 
a~hen, of course, there is no longer an)" need to keep the 
keys in the entry;  uniess they are needed for some other 
purpose, they can just be thrown away. Typically, years 
could go by without encountering two keys in the same 
program with the same vir tual  hash address. Of course, 
one would have to be quite certain that  the hash addresses 
were uniformly spread over the available vir tual  addresses. 
No one, to the author 's  knowledge, has ever implemented 
this idea, and if anyone has, he might well not admit it. 

The  most impor tant  application of vir tual  scatter tables 
is discussed in the next section. 

Scatter Tables on Paged Machines 

On some machines it  is possible for a program to address 
more storage than is actually available to the program in 
the fast storage of the machine. When an item is refer- 
enced by the program and the i tem is not  already in fast 
storage, the block of data  (called a page) which contains 
the i tem must  be brought  into fast storage fl'om second- 
ary storage. Fur ther  execution of the program is delayed 
until the input operation is completed. On such a machine, 
a scatter table can be defined whose size exceeds the 
amount  of fast storage available to the program, so tha t  
every new access to the scatter table might cause an input 
operation to occur. Slow execution would result. 

In such cases, it is most efficient to choose means of 
accessing entries which ensure that  consecutive references 
to storage are as often as possible in pages that  have re- 
cently been referenced and thus are likely to be already 
i n  fast, storage. 

If the entries themselves are kept in the scatter table, 
then the linear probing method becomes more attractive 
because consecutive probes are highly likely to be on the 
same page. (Page sizes are most often in the range from 
26 to 212 words.) I t  may welt turn out tha t  two probes on 
different pages are more expensive of t ime than a dozen 
probes all on the same page. This consideration can be 
neglected if it is known that  all the required pages will 
remain in fast storage. 

For a really large scatter table, where it is unlikely or 
impossible that  the whole table can be held in fast storage, 
it would almost certainly be most efficient to use a scatter 
index table and keep extra hash bits along with the pointer 
in the index table. Also, collisions should be resolved 
within the index and not by  chaining through free storage. 
Since the index table consists of single-word items, many 
more of its pages can be kept in fast storage--possibly 
all of them. Then the program stands the chance of need- 
ing a new page only when it tries to access the entry itself. 
By  keeping enough extra hash bits in the index, the prob- 

ability of accessing an unwanted entry can be reduced as 
much as desired. Then the risk of bringing a new page into 

fast storage occurs only once for each i tem referenced. 
I t  would be wasteful of time to define a very large scatter 

table on a paged machine and then to use either random 
probing or chaining through free storage to resolve col- 

lisions. Ei ther  method would result in the risk of bring- 
ing a new page into fast storage for every probe. 
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Appendix A. FORTRAN IV Scatter Storage Program--Random Method 

C PROGRAM TO LOOKUP AND ENTER DATA IN A SCATTER TABLE. 
C THE TABLE IS SEARCHED ACCORDING TO A GIVEN KEY, 
C IF sUCCESSFUL, AN ASSOCIATED VALUE IS RETURNED, 
C A LOGICAL VARIABLE IS SET TO ,TRUE, OR .FALSE. ACCORDING 
C TO WHETHER THE SEARCH WAS SUCCESSFUL OR NOT, 
C IN EITHER CASE, THE KEY AND AN ASSOCIATED VALUE 
C MAy BE INSTALLEO IN THE TABLE BY CALLING INSTAL, 
C A WORD OF ALL ZEROES MAY NOT BE USED AS A KEY. 
C NO PROVISION IS MADE FOR DELETION OF ENTRIES. 
C THE TABLE sIZE MUST BE A POWER OF TWO, 

C MEANING OF SYMBOLS 

KEYS = TABLE OF KEYS ENIERED 
VALUES(J) : VALUE ASSOCIATED WITH KEYS(J1 
KEY = KEY FOR CURRENT CALL 
VALUE : ASSOCIATED VALUE FOUND OR TO BE ENTERED 
KEYSAV = KEY USED IN MOST RECENT CALL TO LOOKUP 
FOUND = ,TRUE, IF KEY WAS FOUND 
FIRST = .TRUE. BEFORE FIRST CALL TO LOOKUP 
KPLACE = CURRENT INDEX FOR TABLE ENTRY 
KRAND/W = CURRENT PSEUDO-RANDOM oFFsET 
ItlA5H = [IASH ADDRESS FOR CURRENT KEY 
N ~ NUMBER OF BITS IN HASH ADDRESS 
WDSIZE = NUMBER OF BITS IN MACHINE WORD 
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SUBROUTINE LOOKUP(KEY~FOUND,VALUEI 
LOGICAL FIRST, FOUND 
INTE6ER WDSIZE 
COMMON KEYS, VALUES~ KEYSAV, KPLACE 
DATA FIRST /,TRUE,/ 
DATA WDSIZE /361 

C THE FOLLOWING TWO CARDS MUST BE CHANGED 
C TO CHANGE THE TABLE SIZE, 

DIMENSION KEYS(iOZ4), VALUES(t024) 
DATA N / I 0 /  

IF(FIRST) GO TO 91 
1 IF(KEY .EO. O) GO TO 99 

KEYSAV = KEY 

C USE AS A HASH ADDRESS THE PRODUCT OF THE KEY WITH AN 
C APPROPRIATE MULTIPLIER. 

KRAND = I 
IHASH = O 
KEYA = IABS(KEY) 
DO I i  I=I,WDSIZE,N 

11 IHASH = IHASH ÷ KEYA/ (2m* ( I - i I )  

(Please turn the page) 
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C LOOK AT THE INOICATEO PLACE iN IH[ : : i L E  
<: TO FiNO OUT IF :Y IS 
C - EHPTY 
C - OCCU#:EO ~Y THIS KEY 
E - OCCUPIED BY ANOTHER KEYs SO ~E RUST LOOK FURTHER~ 

21 KPLAEE ~ ~ O O { ~ H A S H + K R A N O / ~ Z ~ N ~  ~ ! 
~F{KEYSt<PLA<E~ ~EQ* REv~ 6 0  ~0 3{ 
~ F { K E Y S ( K R L A C E )  ,E@~ OR G6:0 ~i 

:FIKRAND ,EQ~ l~ GO TO 9 ~  

GO TO 21 

3 :  FOUNO = . T R U E ,  
VALUE = V A L U E S ( ~ P L A E E ~  
RETURN 

Al FOUNO= ~ F A i S E .  
RETURN 

9 1  K = ~ * N  
60 92  lal~K 

O~ K E Y S ~ ] 9  = 0 

F{RST ~ ~FALSE~ 
GO TO 1 

9 0  C A l L  ERROR 
STOP 

END 

Skin'ROUT{N{: INSTAL ~K[Y~VALU{I 
COMMON <EYS~ V A { U E S *  KEYSAV~ KPLACE 

<: THE FOLLOW:NO <ARb Mk)ST 18~ <HANL,CR TO CHANG( [}iX 
C TABLE: S : Z E ~  

DIMENSION K E Y S I I 0 3 A i *  V A L U E S ( 1 0 2 4 }  

~F{KEY ,NEe K£YSAVI GO ~O R9 
K{[YS~KPLACE) ~ K~YSAV 
VALUES(KPLAC[) ~ VALUE 
RE/URN 

99  CALL ERROR 
STOP 

Al:#~,:ndix B. FORFR,A[ IV Scatter Index Table Program 

PROGRAM TO LO©KU~, ENTER, ANO DELETE DATA ~N A 
SCATTER TABLE, THE TA~LE ~S SEARCHEO ACCORO:NG TO 
A G ~ v E N  KEY, IR  SUC<ESSTUL~ AN A S S O C : A T E O  VALUE IS 
RETUR~EO. A LOG:CAt FAR[ABLE :S SET TO ,TRUE, OR 
,FALSE. ACCOR©~6 ~0 ~HE:HER :~E SEARCH ~AS 
SuCEESSFbL OR MOT. :N EITHER CASE, THE KEY AM© AM 
ASSOC~ATEO VALUE ~mY 8E ~NSTALLE© I ~  THE TABLE BY 
CaLL:NO :NSTAt. THE KEY ~A~ BE DE~ETED TRUE THE 
TA~LE 8Y <ALL[~ DELETE, 

ACCESS :{9 ENTREES ]5 ~Y A HASH AODLRESS [ N  A S<:AT[ER 
~NOEx TASTE. THE ENTREES ARE THREE ~OR© : T E ~ S  
ALLOCATED AS ~EE~EO ~ROH ~ FREE STORAGE LEST. 
THE F:RST ~ORD OF EACH ENTRY iS  A ~O~NTER TO 
~00[T:O~AE :TENS ~TH :HE SAME ~ASH AOORESS~ :E 
T~{E~E ARE ANY. T~[ F:RST ~ORO [S OTHER~::SE ZERO, 
THE SEEO~O ~ORD OF EACH ENT:RY HOLDS THE KEY A#~O 
THE T~RD wORO ~DLOS T~HE ASSOCIATED VALUE. 
THE SIEE OF THE :NDE~ TABLE MuST 8E A POWER OF T~O. 

HEAR:NO OF SYmbOLS 

KEY = < E r  [0 /R CURRENT CALL 
VALUE = ~ S S O E : A T E O  VALUE FOUND OR TO ~E E~@TEREO 
FOU~:D = .TRUE, :F  KEY ~AS FLYJ~O 
~:RST = .TRUE, 8EFOR:E F~RST CALL TO LOOK<Am 
<EYSA~ = KEY <#SEO :N ~OST RECEnt CALL TO LOOKUP 
! H I S H  = H~S~ A©ORESS FOR <~JRRENT KEY 
~ D S : Z E  = ~ # ~ E i R  OF 8 : Y S  IN  ~AEH~NE ~ORO 
:~6LE = ~OEX TAILE 

KRCACE = CURREnt ~EZ i ~  TABLE 
N = N~BER OF 8 I T S  :~ HASH ADb'gESS 
TSL : FREE STORAGE {.:ST 
F R S : Z E  = NU~ER OF ~OR~S ~ FSL 
K~REE = ~O~NTER :0 NEXT ~V~:LiSLE ~ORO :N ESL 
K~RO~E = RO~TER TO EuRRE~T :TE~ :N FSL 
L~ROSE : :TiN JUST 9REV[OUS i N  CHA:N :3 CURRENT ~TEM 

= 0 ~T NO ~REV:OkJS iTCH 

ZU~R~JT:~E LO~OK~P{KE~,ROU~©,~LUE~ 
L O Q : E ~ t  FO~4~O, FEAST 
iITEGER IiSIZE~ iRSiZE~ V~L~E 
CD~H©~ TA~LE~ ~SE 
OATA ~ D S ~ Z E  / ~ /  
DATA ~RST I ~ T ~ u E * i  

~E FOk.LC~:N<: <AROS ~aUST ~E <~i~OLO 70 C~A~GE :~<£ :ABLE 5{ZES~ 

INTEGER ~ t f ( 6 ~ }  
DATA 8~ 7~/ 
D I T A  WRSiZE  1 6 0 0 0 1  
~N~EGER F S t { & O O 0 ~  

C FOUNO OR LJNT!L THE END OF THE CHAIN  IS  REACHEO,  

2~ ~F(FSL{KPR08[+II . E Q ,  KEY1 ~0 ~O 31 
~ f f ( F S L { K P R O B E 1  ,EQ. 0 }  GO TO @i 
LPROSE = KPROBE 
KPRO~E ~ F S L ( K P R O S [ }  
G6 TO 21 

3~ FOUND ~ .TRUE, 
VALUE = F S ~ ( K P R ( F B [ * 2 ]  
RE TURN 

~ l  FOUND = , F A L S E .  
RETURN 

C INITIALIZE FREE STORAGE L~ST 

~: ~FREE = 0 
K ~ F R S ! Z E  - 2 
GO 9 2  I = 1 , < . 3  
F S L ( I !  ~ KFREE 

o 2  KCREE ~ { 

0 6  9 3  I = : , : S ~ Z  
99 T A B L E ~  = O 

FIRST = ,FALSE, 
GO TO ! 

ENTRY ~ N S ~ A L { K E Y , V A L U E )  

< CHECK FOR PROPER KEY AND GHECK ~HLTH~R KEY 
< i S  ALREADY THER[ OR NOT.  

{F~KEY * N E ,  KEYSAV)  GO TO 99  

F~FSL{K~ROStm%) .tO, KEYS~V~ GO TO i~I 

C ALLOCATE SPACE FOR THE ME'# ERTRY 

~21 I F ~ K ~ R E E  I E O .  O) GO T© ~9 
KPRODff * KF~EE 
<tREE ~ ~SL{K~R[[~ 
FSL~KPROB£~ ~ T ~ L E ~ K P L A < ~ )  
~ A B L E I K P L A Q E ~  ~ K~ROB~ 

~31 T S L t K P R O B E * I /  = ~EYSAV 
F S L I K ~ R O S E ~ 2 1  ~ V ~ L U ;  
Rf~UR~ 

< E ~ S A /  ~ KE* 

k. P~DF~ff 5 

E 0 4 ~ C £  FO~ PRO~E~ K E ~ .  

]F~KE'~ ~t~Z, #£YSAV~ D9 TO 9<, 

9 9  +'ALL ffR~©F~ 

Vohtme Ill / Numb~r I / J~m~ary~ i{~ 


