
The BXI, works like a T tX if the SEcond operand (in this
ease 3) is odd; the BXH with an even second ~vrgument
allows the increment and comparand to be in adjacent
regist.ers, in this ease 4 aud 5. The Stl. subtraets register 5
from register 2. C is a fuI1 word comparison which sets

the condition codE; this example could be modified for a

halfword ~able by changing (3 to CH and "4" to "2"

throughout the instructions above. BC branches (>~ eon-

dition code 6, which is 0110 in binary--.-i.e., first opera.nd

low or first operand high.

The timi~g iu this ~.xa.mpl< depend:, ~>~ d~<, ,~o~i(1. (3,~
the),L>d ;~0, th~ (imiugs in microseeouds of the givm~
instructions arE: BXI,, ;;S; I;XH, 3SiS l{, 30: (' . SO: BC,
15. ThE total is 151 nficrose('~u~d, \ si~!{]b' muii it@ i>
struetion on the Mod ;gt) t~kes 2;~5 mi,.:roa'c(mds. (h~ ~ther
models the situ0, iiOlt iS R)SS clear, bl, l[iD, ttlt} (VeIlb ;~i legist
five instructions ~re needed: multiply, ma.sk, BXtI ~0
TFUIA. C, and B(L Note that ~,> this machine ~ cam~ot
"enclose" a BXH ~ithi~ :~ comparison tweau,;c ~h~: C
instruetii:m does not skip, but merely >e{s thv co~dhiot~
code.

Scatter Storage Techniques

P~ OBERT 3;[ORRIS
Be8 Te/epke~e Laboratories, 3iurra9 .Hill, N. Y.

Scatter storage techniques as a method for implementing
the symbol tables of assemblers ~and compilers are reviewed
and a number of ways of using them more effectively ore pre-
sented. Many of the most useftA variants of ~e techniques are
documented.

KEY WORDS AND PHRASES: *co~r storage, ho~ addressing, searching/,
file scorching, file oddre~i~g, s~or~ge loyout

CR CATEGORIES: 3.73, 3.74

Introduc tion

This paper is primarily concerned with the appEcation
of scatter storage techniques to iutemaI tables such as corn-
prier and a:s~embler symbol tables. Most of ~he previous
literature oa the subject of scatter storage haas been aimed
at, the problems of addn~:~sing random access secondary
storage. The techniques can be applied profitably to any
table or file in which access is to be made to the entrie~s in
unpredictable order and the items are idEntifiEd by some
key a;~soeiated with ~heir contents.

Conskter the simple e~se of an assembler symbol t~(ble.
Names which ap~:~ar in location fieMs during a~sernbly are
given a vab.~e which is the value of the location eourder
current at, ~te time the lOEation field is encountered. E'his
value must })e cor~suitzeJ whenever the same name appea~
elsewhere in ~he program. The location counter vatue~ are
aeee:<~ed in unpredictable order and the~ffore must be
searched R)r at every aeees% each ent~T is as~oeiat.~l with
a name ,ahieh i~, used ~-~ a key for finding the entry. The
table could of toutme be kept i~ alphabet.iced order, but
the be,st :~earch ~eehnique i~ a ~,~rt,~t ~.~ff:)le r~xluires at, k~);sg

38 C o m m u n i c a t i o n s (d t h e AC}I

an average of bg~N pn~hes to tind an item, where 5 i~
the size of the table. Thus, for examplE, a taLle ~i~h t024
entries would require an average of at, least 10 probes to
find an item by searching. One can do much better
than this with a scatter storage table.

A ::',ore important disadvantage of using a soried tans
in this application is thai; if items need to be lo<,k<d up
before all of 'the entries art made, then either

- - the table must be kept sorted after each entLv is made,
with tt~e resulting heavy overhead L~r making each entry,

or
..... the items must be looked up in an unsorted table

until all of the entries are made, at the (:<>st of a tre.
mendo~rs number of probes to tind a~ item.

I/lash Addressing

The fundamental idea behind scatter stor:ge is that, the
key associated with the desired e~try is us~xt to locate the
Entry in sv)rag< Some transformation is performed on the
key O.he name, in th< example above) ~o produce a*~
addre,ss in the table to hold (he key and the entry asaoci-
aged with th(key. A go<~J transformation is o~e that,
sprea.ds *he calculated addremses (>:interlines eaU~:d ha;sh
addresses) uniformly across the available addresses. If ~he
calculated address is already filled with some od~er k~y ~nd
Rs entry because two keys happened to be tra~sformed
i~t.o the same calculated addr{:~s, a+ method is needed for
re~olving the collision of keys, a~:t we will diseu,~ :< ver~d
such methods in what follows.

tf lhe k(ws are names or o{:her .,.,bjeets th~, fit int.,~ a
sin.gle machine word, a popular method of get,crating a
hash address from the k(y is to ehoo:<~ some bi~;~ from the
middle of the square of the k<y. e~mugh bii~¢ to be u~.,d
as an index to addrce~ a~,y item in the table. Sh~e~ the
value f f the middle bits of the ~Jquare depen&,~ on alt of the
bits of the key, we can expect that different keys will give
rise to different h~.sh addre:~es wi@ high probability, more
or lea.~ indep~ ~dently of whether the keys ~.~hare ~,m~e eom ~

i~ii!

m(m [eature, say aJl beghmil~g or all e~ding with the same
l>i(, t m~.I('rm

]if (he keys art,, muldword items, i~he~l some bits from the
t)r<)duet of the words making up the key may be satisfac-
tory as long as care is taken that tile calculated address
does ~<)t {:tt:['~l out to be zero most o:f tile time. The most
(bruegel'otis situation in this respect is when blanks are
ao(bd httcrtmlly as zeros or when partial word items are
p~d(te, d t<)full word length with zeros.

A third method of computing a hash address is to cut
I, he key up into n-bit sections, where n is the number of
bits ~eeded for tile hash address, and then to form the sum
of all of these sections. The low-order n bits of the sum is
used as the hash address. This method can be used for
sit,tie-word keys as well as for multiword keys. A program
using this method appears in Appendix A.

All three of these methods of computing hash addresses
have been in use for years with satisfactory results, but in
a new application or on a new computing machine, care
must still be taken that the computed addresses are
spread uniformly over the available table space.

Handling Collisions

Once some entries have been made into a scatter storage
table, it becomes possible for tile computed addresses of
different keys to be the same, causing a collision between
tile storage locations allocated to each. Some other place
must be found for one of the items. We will initially assume
that once an item has been entered it is never moved or
deleted. So another potential place must be found for the
new entry. In general, when the table is nearly full, many
collisions may occur while probing the table for an empty
sloe. Hence some procedure is needed which generates
additional calculated addresses until all empty slot is
found, probing the entire table if necessary. Of course, the
same procedure for generating additional calculated
addresses must be used when the item is later looked up.

In practice, when a scatter storage table routine is
ealled~ it is not necessary to specify whether an item is
being entered or being looked up. What is required of the
l'outine is to determine the address at which the offered
key belongs and to report whether the key was already
entered. Then tile calling routine can make the entry or
extract tile infornmtion, as N)propriate. The procedure,
then, will be to generate successive hash addresses until
eneounteri,g either a slot that contains the desired key or
an empty slot. In tile latter ease, the key is entered in the
empty slot, if :it is entered at all.

The possibility that several keys ean generate the same
calculated address means that the key must be storm in
the table along with its associated entry. For example,
when)mmbers are stored in an array, the index in tile
array uniquely specifies the storage allocated to an item.
In mt application (such as a sparse matrix) where it is
know,~ (hat very few elements in the array will actually be
used, ~)ne might advantageously use the subscript eombi-
nati(m as a key and compute a lmsh addl~ss from the

values of the subscripts. The item can then be accessed
through the hash address. But then the subscripts associ-
ated with the number must be stored along with the num-
ber itself. For example, if A(10) were equal to 1.5, then
the corresponding table entry would most likely be a two-
word item, one word containing the subscript 10, and the
other word containing the number 1.5. This is a powerful
but little-known technique for handling sparse arrays. It
can greatly reduce the storage requirements at the cost of
increased programming complexity and longer access time.
Observe that this is a useful method for storing arrays only
when array elements are to be accessed in unpredictable
order; it would not be a good method if matrix operations
such as addition or multipheation were to be performed on
the arrays.

Many methods of resolving collisions have been sug-
gested and used, and the particular method to be used in
a particular application should be chosen earefuUy since
the method of handling collisions profoundly affects the
efficiency of the technique and the difficulty of the pro-
gramming task.

Table Layout

In almost every application, an entry in a scatter storage
table occupies more than one word, typically at least one
word for the key and at least one word for the data asso~
elated with the key. If an entry occupies k words and
space is required for N entries, then altogether k N words
of storage are needed. Two straightforward ways of
arranging the table are:

to put each entry into k consecutive words and use
only hash addresses that point to the first word of an
entry, This can readily be done by multiplying each hash
address by k and using the product as an index in the
table.

- - to divide the table into k sections, each with hr words.
Tq?n the hash address is used as an index in the first table

find the first word of an entry and as an index in the
~ond table to find the second word of an entry, and so
rth.
The only difference between these two methods is one

programming convenience. In either case, the hash
~ddress is used as all index in the table and not as an
ab~;olute storage address.

Since most hash-addressing schemes produce a number
of r~ndom bits to be used as an index, it is most convenient
to use only values of N which are powel~ of 2. For instance,
if the hash transformation generates 1 bits, one can use the

~bits as an index in a table with space for N = 2 ~ entries.
..'Other considerations apply to storage that does not have
binary addresses.

There nmst be some way of distinguishing an empty slot
in the table from any possible vMid entry. For instance, if
zero can be excluded as a valid key, then a zero key can be
used to mean that an entry is empty. Of course the entire
table nmst be initialized to whatever state is being used to
signal elnpty slots in the table.

V()lttnte 11 / Number 1 / J a . u a r y , /968 Communica t i ons of t h e AC~M[39

R a n d o m P r o b i n g

An efficient and elegant method of generating successive
eateuIa.ted address.aes to handle eoltk, dons is as follows:

1. Calculate an address 7 in the table by using son~e
transformatinn on the key as an index.

2. If the item is already at this address or if the ph~ce is
empty, the job is done.

3. I:f some other key is ttx~re, call a pscudorandom
number generator for an integer offset p, ~ lake. {he
next probe at ~ @ p and e:o to step te l

The pseudonmdom number generator can be of the sim-
plest sort and usually can be written in tess than six ma-
chine instructions, t t must generate es+ery int<eger from 1 to
N -- 1 (where 37 is the sb:e of the table) exaetty once.
When the generator runs out. of intege~, the table is full
and the entry cannot be made.

The following will serve ~,he purpose as a random num-
Q~

ber generator for tables whose size is Y = z , a power of
two.

Initialize an integer R to be Equal to 1 ever}" time {he
~abting routine is called, and then on each suceeasive calt
for a random number:

- - se t R = R * 5
.... ma~k out all bu t the tow-order n. + !2 bits of the

product, and place the result m R,
- -se t p = R/4 and return.
A scatter storage routine using this technique of han-

dlJmg collisions is given in AppendLx A. The important prop-
erey of the pseudorandom number generator in this appli-
cation is that for every value of i, the numbe~, ~+~ -- ~
f o r i ..< i + k < n. - - 1 are all different, where A, is the
jt.h random number which is generated.

The efficiency of the random probing method is best ex-
pressed in terms of the average number E of probes neces-
sary to retrieve an item in the table. This happens ,to be
equal to the average number of probes which were required
to enter the items originally. The nuraber E depends on
the f~action ce of the table which is <>coupled but not ~>h~
the size of the table, tf Y ix the size of the table, antic<L.
i ten~ are in the table, ~hen c~ = k/.iV, The expected nm~,
ber A of probes neeesssary to enter the (k + 1)-st fie,n,
including the final probe, ix

~ ": ~ # Y + 5V iY - : - : -U + ' "

, z : (D - t) - . - (i)
' Nf?~ r , - - 1) . . . ~.~',/'- ~ : + 1)

:gr
where the j t h ~erm in the sum is the probability that j o,.
more probes are needed t/) eater the item, By induction
on k (1) can be re~vritten ass

~ :':~ ~ + Y : : : -TF : :7 :7

....... : , / (, (,e)

For large valu<\s of N, we c~ul r{ptace /,: '(A/ l" 1) b> ~ in
(2) aud .appre×imat< A by

<1 b / (1 . . . ~ (a)

and t.hen E is squat to the avera£e of A f-r v~du~> of l:
f rom 0 to /,: t. We can approxh,mie ~}~ls awm~g~ 1>3 the
integral

S i -:~r -:~r J,, 7x::::~7 (4)
(i,}:

. (l / a) log (1 e~)

The approximations theft were made insure that> the ae~,ua, t
expect<Hi performance is slightly better than is predicted
by (4). Some sample values of E for various vah.~es of e, are:

Load factor c~ E

0. :I 1.05
0.5 1,39
0.75 1.83
0.9 2.56

The muuber of pn)bes necessary for searching a sorted
table is greater than this [or all but, the tiniest ~.ables, but
to make a fair comparison, one must include the extn~ *ime
it takes to compute a hash address. This method of ha>
dling collisions is a variant of a method due to Vyssotsky
{q.

Deletion of entries made using <his scheme ix a tr,,~uble-
some process. One cannot simply mark an entry as empty
in order to delete it because other entries may have collided
at ~:hat place and they would become unreachable. The
h&sh addre~+ses for every entry in the table would have ~o
be recomputed and some of them mc, vc<{ in order to <:lose
up the gap caused by the deleted entry, A much more
convenient method of dele@)n is to reserve a special signal
for a deleted entry (much like ~he special signal for a~
empty item). ()n seamhing for a key, the search continues
if a deieted entry is encountered, A new item can be m-
smtled in place of any deleted entry encountered in search-
ing for its proper place. The disadvantage of this method
is ghat the lookup time is not reduced when entries are
deteted-~-onty {,he lost space is :reclaimed.

L i n e a r P r o b i n g

The first method of gcneratix~g successive calculated
addressees to be sugg<sted i~ the literature {2] was simply
to place colliding entries ~.~ ~ear ~ possible to their nomi..
nally allocated position, in the fi)tlowing sere<. Up,ira colli-
sion, search forward from the nominal positio*~ (the initial
calEulated address), until either the dex~ired entry is h)und
or an empty space is encountered, searching circularly
p~st the end of the table to the beginning, if necessary. If
an empI~y space is encounterc;d, that ~4paee becomes; ~,he
home for the new entry.

Thin procedure b~ the genN effect;ire s trategy in eommo~~
use for r~olving collisions in ~,erme~ of the average number
of probes required to retrieve an item, The r<~,.s+)n for ffs
relatively poor efficiency i~ ~.hat af~:er a %w collisinns have

40 (;ommtl~Heatior~r+ of the +%(i%I Volume 1/ / N~mber I / Jam~aey, 19@ V

bee~ resolved in this way, the e~tries are clumped in such
a way that;, given thai; a collision has just occurred at loca-
t,io:~ l, the probabilil~y of a collision at location l + 1 is
higher than the average probability over the whole table.

The ettieiency of the linear probing method can be
~m~dyzed by techniques shMlar to those used in [3] to
evaluate a related method. The result is that, to within
suitable approximation, the average nmnber E of probes
rmeessary to look up an item in the table is

E = (:l - ~ / 2) / 0 - ~) .

Sample wdues of E are:

Load factor a E

0.1 1.06
0.5 1.50
0.75 2.50
0.9 5.50

(5)

For vahms of a greater than 0.5, the random probing
method is distinctly superior. On the other hand, the
linear probing method is easier to program, and each probe
beyond the first requires less computation.

The problem of deleting entries made in the linear
probing method is similar to the problem for random
probing. However, in order to close the gap caused by the
deleted entry, one need consider only those entries be-
tween the deleted entry and the next empty place in the
table; no other entries could have collided at that spot. If
a special mark is used for a deleted entry, then the lookup
time can be reduced as a result of the deletion by looking
at the next entry in the table. If that entry is empty, then
the deleted entry can also be marked as empty. Moreover,
the table can then be scanned backwards from that point
and every deleted entry marked as empty until an entry
is encountered that is not marked as deleted.

D i r e c t C h a i n i n g

At a small penalty in space, another method of resolving
collisions, called direct chaimng [4], is considerably more
efficient in terms of number of probes per entry than either
of the preceding methods. In this technique, part of one of
the words in each entry is reserved as a pointer to indicate
where additkmal entries with the same calculated address
are to be found, if there are any. Thus all of the entries
with the saine calculated address are to be found on a
linked list (or chain) starting at that address. The last
entry on each chain nmst be distinguished in some way
(such as having a zero pointer).

When a key is to be looked tip, its hash address is com-
puted and then

~} if that address is empty, the key has not been en-
tered.

........ if that address is occupied, search down the chain
hanging from that address; if the key is not encoun-
tered, it is not in the table.

When a new entry :is to be made, compute its hash
address and then

--.if that address is empW, install the item there.
- - i f that address is occupied by the head of a chain, find

an unMloeated cell in the scatter table by any tech-
nique whatever, and piaee the new entry in the newly
allocated cell. Then insert the new entry into the
chain hanging from the calculated Mdress.

- - i f that address is occupied by an entry which is not
the head of a chain, i.e., by an entry which is not at
its own cMeulated address, then the old entry must be
moved to another slot and the new entry inserted in
its place. Moving the old entry requires finding an
empty slot for it, placing it there, and updating the
chain it is on.

The principal disadvantage of this method is tha t
entries must be moved in storage, with all the program-
ruing complexity that this implies. Observe that when a
newly entered item is to be placed on a chain, it is usually
more profitable to place it near the head of its chain rather
than at the end of the chain.

An attractive feature of this method is that when the
table fills up, new items can be placed in an overflow area
with no change in the strategy of making entries or look-
ing them up. Moreover, as we shall see, the efficiency of
the method is still quite good even after overflow has
occurred.

The average number E of probes necessary to find an
item using this scheme is calculated in [4], and is

E = 1 + ~ / 2 (6)

where, as usual, a = k / N , k = number of entries, and N =
number of slots in the table. The formula (6) is still valid
when a > 1, as will happen when items are placed in an
overflow table. The efficiency of lookup depends in no way
on how cells are allocated to items on collision. Some sam-
ple values of efficiency are:

Load factor a E

0.1 1.05
0.5 1.25
0.75 1.38
0.9 1.45
1.5 1.75
2.0 2.00

Formula (6) does not supply a fair comparison with other
methods for values of a greater than 1, since then space is
being used outside of the scatter table, bu t it is not easy
to say how the comparison should be made in this case.

A variation on this method [4] decreases programming
complexity at only slight cost in storage efficiency. The
variation is to treat every item which collides at a calcu-
lated address as an overflow item to be stored in an over-
flow table rather thazl in the scatter table itself. This im-
plies that items need never be moved in storage once they
are entered, but space is used in the overflow area before
the scatter table is itself full. The only inefficiency caused
by this variation is storage inefficiency as more space is re-
quired in the overflow table. However, since there is no

Volume 1ll / Number 1 / January, 1968 Communications of tile ACM 41

ch~dning through the scatter table, the scatter table can be
smaller. Usually it, is the scatter table ~hi{.?h has rigid
storage requirements while the overflow table eau be
got~;en from any ge~eral purpose storage allocator, which.
may well be present f\)r other m~es,

The expected amount of overflow space used can be
ea.lculated as folh>vs: A good appn~ximadoa [5, p. 110] to
the number of occupied slots in the table ~ffter it: items have
been entered is iV(1 -- e-'0 where ~, L: a~d ,V have their
previous meanings. But then, since the total of ¢: items have
been entered, the number which have overflowed is
~: -- N(1 -- e-'0. Therefore the total (expected) amount
of storage that. has been used is

x(~ + e-9. (7)

This factor must be taken into account when the two chair>
ing methods are compared.

The technique for deleting items entered by chaining i.s
as follows:

- - an entry not stored at its calculated ~vJdress nmy be
marked empty and its former chain]oim~t arround it,

....... an entry stored at Xs calculated address, but with no
chain hanging from it, may merely be marked empty.

--.an entry stored at its calculated address with a chain
hanging from it must eRher be ma:rked as deleted or
one of the items on its chain must be moved to the
ealetflated address and the chain properly fixed tip.

Sca t te r Index Tables

It is possible to extend the idea of tmadng every eollkfing
item as an overflow item, namely, t.o place all entries in a
separate s~om~ge area in which space is allocated for entries
only as needc<L TI-mn the scatter ~alole consists only of
pointers to ~he entries. We will calt such a table a scatter
index table to emphasize that the seatt:er '{able contains
not the entries them,:,xJves, but only pointers to the entries~
It. is passible to combine ~he idea of a scatter index table
with any of the three methcds of re:solving eollisio~t% but
there is seldom rea.son to use anything but the chaining
method. Once the prog:~mm-~ing arrangemenus have been
nmde to allocate space as n+:~?dcxt from a free stx/,rage area,
tt~e ehah:~ing n~ethod is just a,s easy to pr, N:ram ~ the
other methods, and it is more efficient,

There are a number of advantages to keeping all of the
data items in a storage area separate from the tearier
table. A <:ta~.a item often r~eeupies m~my words, wherea~ a
pointer usually oceupies only a part of a sir@e word, so
the unu.~ed portion of the scatter table will eons]/~t of single
word i~:em.s rather them the mukiword spaces suRabte for
data i:ems. Beeau:-~ of this, much of the efficiency of t}~
chaining method can be regained wRhout havir,g t,o move
entries aroused in storage~

On.ty so much apace ~m, ed be allocated for each entry gts
is ><.ce~ssary to hold it,, If emtri{xs are kept in the s<mtter
table, one v, ouId have t,o allocate for each iiern as much
space as is needed for the Iarg~t of them, Monx)ve:r~ it may
well m>t be known at the time a key is first eneounteresf

42 Communieatlot~s of the AC~I

how mueh space wil t be r equ ind to hoht the ass~daRq
en { r}%

Delet,hm of entries is trivial~ ,\> i tem to be <hq< h)d, iS
simply removed from the chain it is on mid reiurned to
free stnrage.

Appendix I3 is a program which uses the mei,hod 0f
scatter index tables.

Vir tual 5car te r Tables

The time spent searchi~g foc a.n item in a table deperlds
not ouly on the immber of probes neednd to fii~d the item,
but also on the time reqtfimd to make a single probe. If
the keys ~>e as all complex, for instance, if they are eharae.
ter s~rbb> of varying le{Gth, it. may take s considerable
amount of thne to find out whether or not two keys are
the saune.

For some appticati{?~s, aa attractive method of d(~x'e~.
big the 4mount of thne needed to make a probe is to com-
pute a hash address suitable for a much larger scatter
gable than is actually" bei~g used and then to place the
extra bits i~:t the entry. For example, if a t024-word scatter
tM)le is being used and a 20-bit hash addr(x~s is cornputed~
then 10 of the bits cam be used to address the table entry
and the remaining 10 bits placed in the entry Then the
table can be made to act in some respects as if it wen s
very lighdy loaded scatter table with 2 :;~ slots.

W h e n an entry is being looke/t up, compute its hash
add~ess as usual and follow whatever collision doctrhe
[~s been chosen, but instead of compari~g keys, first con>
pare the e/xtm~ hash bits lust computed with the extra
hash bits stored in the entries. Only if the extra hash
bits are the same, need the keys be compared. In J~e e>
ample above, where twice a;~ many bits were eomput~J]
as were needed, one could expect more often than ~0t
that by the t.ime the ruble was filled, no two keys were
ever compared which turned out to b~ differ(mr. The prob
ability of two keys having the same hash addr(x~s and the
same extra hmsh bits is precisely the same ~s the probabil-
ity that they would collide in the taNer virtual table.

The expeetc~:t total number of probe.s needed to enter
2 ~~ items into a table with 9 e° slot;s is eq~ml to 2 u~ f ~ be-
cause a 2 -~° and %r very lightly loaded gables each d
the eolli@m doct£nes £iw<s an expeeted average mmj}er
of probes E -,= I + ~C2.

A :~teo~:~d application of the idea of virtual sear ~er t ~b!es
is t,hat it permits a scatter table to be i~crea~<~d h~. size
during executio~ without rehash, ing all of the key:-~ im
deed, without rehashing any of the keys~ tn order to d,mbb
the size of a scatter table, a sir@e pm~s is made through
the old table and e~tries are placed in the lower or ~pper
half of the new table depending on whether their lowerr.
order extm~ hash bit is 0 or I, If collisions were r<~oR'af
by the linear method or by the ~xmdem megh{M, theu the
o @ n a t h ~ h bi~ r~eed to be kept, im addition to t.he extr~
hash bits so that ~I:~e oAginal e~d:cula~:d addrr, x<~ <m be
reeowx'ed, tf cotlMoas were rea)bed by ehaini~g, tbm
thi~ [S U~e{:es~ary. Of eou?s G whets the se,~Gfer t.abie is

us(:d ~s an index, no d~d;a, items need be moved, only
i)oin Lets,

A curious possible use of virtual scatter tables arises
whe~l ~ hash ~ddress can be computed with more than
~boul; three times as many bits as are actually needed for a
calculated address, The possibility tha t two different
keys have the same virtuM hash address becomes so re-
mote that the keys might not need to be examined at all.
t f ~ new key has the same virtual hash address as an exist-
ing entry, then the keys could be assumed to be the same.
a~hen, of course, there is no longer an)" need to keep the
keys in the entry; uniess they are needed for some other
purpose, they can just be thrown away. Typically, years
could go by without encountering two keys in the same
program with the same vir tual hash address. Of course,
one would have to be quite certain that the hash addresses
were uniformly spread over the available vir tual addresses.
No one, to the author 's knowledge, has ever implemented
this idea, and if anyone has, he might well not admit it.

The most impor tant application of vir tual scatter tables
is discussed in the next section.

Scatter Tables on Paged Machines

On some machines it is possible for a program to address
more storage than is actually available to the program in
the fast storage of the machine. When an item is refer-
enced by the program and the i tem is not already in fast
storage, the block of data (called a page) which contains
the i tem must be brought into fast storage fl'om second-
ary storage. Fur ther execution of the program is delayed
until the input operation is completed. On such a machine,
a scatter table can be defined whose size exceeds the
amount of fast storage available to the program, so tha t
every new access to the scatter table might cause an input
operation to occur. Slow execution would result.

In such cases, it is most efficient to choose means of
accessing entries which ensure that consecutive references
to storage are as often as possible in pages that have re-
cently been referenced and thus are likely to be already
i n fast, storage.

If the entries themselves are kept in the scatter table,
then the linear probing method becomes more attractive
because consecutive probes are highly likely to be on the
same page. (Page sizes are most often in the range from
26 to 212 words.) I t may welt turn out tha t two probes on
different pages are more expensive of t ime than a dozen
probes all on the same page. This consideration can be
neglected if it is known that all the required pages will
remain in fast storage.

For a really large scatter table, where it is unlikely or
impossible that the whole table can be held in fast storage,
it would almost certainly be most efficient to use a scatter
index table and keep extra hash bits along with the pointer
in the index table. Also, collisions should be resolved
within the index and not by chaining through free storage.
Since the index table consists of single-word items, many
more of its pages can be kept in fast storage--possibly
all of them. Then the program stands the chance of need-
ing a new page only when it tries to access the entry itself.
By keeping enough extra hash bits in the index, the prob-

ability of accessing an unwanted entry can be reduced as
much as desired. Then the risk of bringing a new page into

fast storage occurs only once for each i tem referenced.
I t would be wasteful of time to define a very large scatter

table on a paged machine and then to use either random
probing or chaining through free storage to resolve col-

lisions. Ei ther method would result in the risk of bring-
ing a new page into fast storage for every probe.

REFERENCES

1. MeILnov, M. D. A variant method of file searching. Comm.
ACM 6 (Jan. 1963), 101.

2. PETERSON, W. W. Addressing for random-access storage.
IBM J. Res. Dev. 1 (1957), 130-146.

3. SCHAY, G., AND SPRUTH, W. G. Analysis of a file addressing
method. Comm. ACM 5 (Aug. 1962), 459--462.

4. JOHNSON, L.R. Indirect chaining method for addressing on
secondary keys. Comm. ACM 4 (May 1961), 218-222.

5. FELLER, W. An Introduction to Probability Theory and Its
Applications, Vol. I. John Wiley & Sons, New York, 1950.

Appendix A. FORTRAN IV Scatter Storage Program--Random Method

C PROGRAM TO LOOKUP AND ENTER DATA IN A SCATTER TABLE.
C THE TABLE IS SEARCHED ACCORDING TO A GIVEN KEY,
C IF sUCCESSFUL, AN ASSOCIATED VALUE IS RETURNED,
C A LOGICAL VARIABLE IS SET TO ,TRUE, OR .FALSE. ACCORDING
C TO WHETHER THE SEARCH WAS SUCCESSFUL OR NOT,
C IN EITHER CASE, THE KEY AND AN ASSOCIATED VALUE
C MAy BE INSTALLEO IN THE TABLE BY CALLING INSTAL,
C A WORD OF ALL ZEROES MAY NOT BE USED AS A KEY.
C NO PROVISION IS MADE FOR DELETION OF ENTRIES.
C THE TABLE sIZE MUST BE A POWER OF TWO,

C MEANING OF SYMBOLS

KEYS = TABLE OF KEYS ENIERED
VALUES(J) : VALUE ASSOCIATED WITH KEYS(J1
KEY = KEY FOR CURRENT CALL
VALUE : ASSOCIATED VALUE FOUND OR TO BE ENTERED
KEYSAV = KEY USED IN MOST RECENT CALL TO LOOKUP
FOUND = ,TRUE, IF KEY WAS FOUND
FIRST = .TRUE. BEFORE FIRST CALL TO LOOKUP
KPLACE = CURRENT INDEX FOR TABLE ENTRY
KRAND/W = CURRENT PSEUDO-RANDOM oFFsET
ItlA5H = [IASH ADDRESS FOR CURRENT KEY
N ~ NUMBER OF BITS IN HASH ADDRESS
WDSIZE = NUMBER OF BITS IN MACHINE WORD

Volume 11. / Number 1 / January, 1968

SUBROUTINE LOOKUP(KEY~FOUND,VALUEI
LOGICAL FIRST, FOUND
INTE6ER WDSIZE
COMMON KEYS, VALUES~ KEYSAV, KPLACE
DATA FIRST /,TRUE,/
DATA WDSIZE /361

C THE FOLLOWING TWO CARDS MUST BE CHANGED
C TO CHANGE THE TABLE SIZE,

DIMENSION KEYS(iOZ4), VALUES(t024)
DATA N / I 0 /

IF(FIRST) GO TO 91
1 IF(KEY .EO. O) GO TO 99

KEYSAV = KEY

C USE AS A HASH ADDRESS THE PRODUCT OF THE KEY WITH AN
C APPROPRIATE MULTIPLIER.

KRAND = I
IHASH = O
KEYA = IABS(KEY)
DO I i I=I,WDSIZE,N

11 IHASH = IHASH ÷ KEYA/ (2m* (I - i I)

(Please turn the page)

Communications of tile ACM 43

C LOOK AT THE INOICATEO PLACE iN IH[: : i L E
<: TO FiNO OUT IF :Y IS
C - EHPTY
C - OCCU#:EO ~Y THIS KEY
E - OCCUPIED BY ANOTHER KEYs SO ~E RUST LOOK FURTHER~

21 KPLAEE ~ ~ O O { ~ H A S H + K R A N O / ~ Z ~ N ~ ~ !
~F{KEYSt<PLA<E~ ~EQ* REv~ 6 0 ~0 3{
~ F { K E Y S (K R L A C E) ,E@~ OR G6:0 ~i

:FIKRAND ,EQ~ l~ GO TO 9 ~

GO TO 21

3 : FOUNO = . T R U E ,
VALUE = V A L U E S (~ P L A E E ~
RETURN

Al FOUNO= ~ F A i S E .
RETURN

9 1 K = ~ * N
60 92 lal~K

O~ K E Y S ~] 9 = 0

F{RST ~ ~FALSE~
GO TO 1

9 0 C A l L ERROR
STOP

END

Skin'ROUT{N{: INSTAL ~K[Y~VALU{I
COMMON <EYS~ V A { U E S * KEYSAV~ KPLACE

<: THE FOLLOW:NO <ARb Mk)ST 18~ <HANL,CR TO CHANG([}iX
C TABLE: S : Z E ~

DIMENSION K E Y S I I 0 3 A i * V A L U E S (1 0 2 4 }

~F{KEY ,NEe K£YSAVI GO ~O R9
K{[YS~KPLACE) ~ K~YSAV
VALUES(KPLAC[) ~ VALUE
RE/URN

99 CALL ERROR
STOP

Al:#~,:ndix B. FORFR,A[IV Scatter Index Table Program

PROGRAM TO LO©KU~, ENTER, ANO DELETE DATA ~N A
SCATTER TABLE, THE TA~LE ~S SEARCHEO ACCORO:NG TO
A G ~ v E N KEY, IR SUC<ESSTUL~ AN A S S O C : A T E O VALUE IS
RETUR~EO. A LOG:CAt FAR[ABLE :S SET TO ,TRUE, OR
,FALSE. ACCOR©~6 ~0 ~HE:HER :~E SEARCH ~AS
SuCEESSFbL OR MOT. :N EITHER CASE, THE KEY AM© AM
ASSOC~ATEO VALUE ~mY 8E ~NSTALLE© I ~ THE TABLE BY
CaLL:NO :NSTAt. THE KEY ~A~ BE DE~ETED TRUE THE
TA~LE 8Y <ALL[~ DELETE,

ACCESS :{9 ENTREES]5 ~Y A HASH AODLRESS [N A S<:AT[ER
~NOEx TASTE. THE ENTREES ARE THREE ~OR© : T E ~ S
ALLOCATED AS ~EE~EO ~ROH ~ FREE STORAGE LEST.
THE F:RST ~ORD OF EACH ENTRY iS A ~O~NTER TO
~00[T:O~AE :TENS ~TH :HE SAME ~ASH AOORESS~ :E
T~{E~E ARE ANY. T~[F:RST ~ORO [S OTHER~::SE ZERO,
THE SEEO~O ~ORD OF EACH ENT:RY HOLDS THE KEY A#~O
THE T~RD wORO ~DLOS T~HE ASSOCIATED VALUE.
THE SIEE OF THE :NDE~ TABLE MuST 8E A POWER OF T~O.

HEAR:NO OF SYmbOLS

KEY = < E r [0 /R CURRENT CALL
VALUE = ~ S S O E : A T E O VALUE FOUND OR TO ~E E~@TEREO
FOU~:D = .TRUE, :F KEY ~AS FLYJ~O
~:RST = .TRUE, 8EFOR:E F~RST CALL TO LOOK<Am
<EYSA~ = KEY <#SEO :N ~OST RECEnt CALL TO LOOKUP
! H I S H = H~S~ A©ORESS FOR <~JRRENT KEY
~ D S : Z E = ~ # ~ E i R OF 8 : Y S IN ~AEH~NE ~ORO
:~6LE = ~OEX TAILE

KRCACE = CURREnt ~EZ i ~ TABLE
N = N~BER OF 8 I T S :~ HASH ADb'gESS
TSL : FREE STORAGE {.:ST
F R S : Z E = NU~ER OF ~OR~S ~ FSL
K~REE = ~O~NTER :0 NEXT ~V~:LiSLE ~ORO :N ESL
K~RO~E = RO~TER TO EuRRE~T :TE~ :N FSL
L~ROSE : :TiN JUST 9REV[OUS i N CHA:N :3 CURRENT ~TEM

= 0 ~T NO ~REV:OkJS iTCH

ZU~R~JT:~E LO~OK~P{KE~,ROU~©,~LUE~
L O Q : E ~ t FO~4~O, FEAST
iITEGER IiSIZE~ iRSiZE~ V~L~E
CD~H©~ TA~LE~ ~SE
OATA ~ D S ~ Z E / ~ /
DATA ~RST I ~ T ~ u E * i

~E FOk.LC~:N<: <AROS ~aUST ~E <~i~OLO 70 C~A~GE :~<£ :ABLE 5{ZES~

INTEGER ~ t f (6 ~ }
DATA 8~ 7~/
D I T A WRSiZE 1 6 0 0 0 1
~N~EGER F S t { & O O 0 ~

C FOUNO OR LJNT!L THE END OF THE CHAIN IS REACHEO,

2~ ~F(FSL{KPR08[+II . E Q , KEY1 ~0 ~O 31
~ f f (F S L { K P R O B E 1 ,EQ. 0 } GO TO @i
LPROSE = KPROBE
KPRO~E ~ F S L (K P R O S [}
G6 TO 21

3~ FOUND ~ .TRUE,
VALUE = F S ~ (K P R (F B [* 2]
RE TURN

~ l FOUND = , F A L S E .
RETURN

C INITIALIZE FREE STORAGE L~ST

~: ~FREE = 0
K ~ F R S ! Z E - 2
GO 9 2 I = 1 , < . 3
F S L (I ! ~ KFREE

o 2 KCREE ~ {

0 6 9 3 I = : , : S ~ Z
99 T A B L E ~ = O

FIRST = ,FALSE,
GO TO !

ENTRY ~ N S ~ A L { K E Y , V A L U E)

< CHECK FOR PROPER KEY AND GHECK ~HLTH~R KEY
< i S ALREADY THER[OR NOT.

{F~KEY * N E , KEYSAV) GO TO 99

F~FSL{K~ROStm%) .tO, KEYS~V~ GO TO i~I

C ALLOCATE SPACE FOR THE ME'# ERTRY

~21 I F ~ K ~ R E E I E O . O) GO T© ~9
KPRODff * KF~EE
<tREE ~ ~SL{K~R[[~
FSL~KPROB£~ ~ T ~ L E ~ K P L A < ~)
~ A B L E I K P L A Q E ~ ~ K~ROB~

~31 T S L t K P R O B E * I / = ~EYSAV
F S L I K ~ R O S E ~ 2 1 ~ V ~ L U ;
Rf~UR~

< E ~ S A / ~ KE*

k. P~DF~ff 5

E 0 4 ~ C £ FO~ PRO~E~ K E ~ .

]F~KE'~ ~t~Z, #£YSAV~ D9 TO 9<,

9 9 +'ALL ffR~©F~

Vohtme Ill / Numb~r I / J~m~ary~ i{~

