The BXL works Lke & TIX if the seeond operand {in this
case 3) 18 odd; the BXH with an even second argument

allows the inerement and comparand to be in ad
registers, in this case + and 5. The SR subtracts reglster &
from register 2. O s & full word comparison which sets
the condition code; this example could be modified for a

throughout the nstructions above. BO branches ou con-

halfword table by changing ©C to CH and

dition eode 6, which is 0110 in binary-—Le,, fitst operand
tow or first operand high.

Scatter Storage T echniques

Rozerr Monris
Bell Telephone Laboratories, Murray Hdl, N J.

Scotter starage techniques os o method for implementing
the symbol tables of assemblers ond compilers are reviawed
ond a number of woys of using them more effectively are pre-
sented, Many of the most yseful variants of the techniques are
documented.

KEY WORDS AND PHRASES:
fle searching, file addressing, stornge inyout
CR CATEGORIES: 3.73, 3.74

scofter storage, hosh addrewing, seorchingg

Introduction

This paper s prisnarily eoncerned with the appleation
of seatter storage techninues to internal tables such a& com-
piler amd assemnbler svinbol tables. Most of the vrevinus
iterature on the suhioet of seatver storaze has been simed
at the problems of addressing random secess secondary
storage, The techulques can be applied profitably to any
table or Hie in whieh aceess is 10 he made 1o the enities in
unpredictable order and the ey are identified by some
ey s = with thelr contents,

Congider the simple ¢ sembler syvmhol table.
Names which appesr in locatlon fields during assembly are
given o value which is the value of the loeation counter
current i the time the lneation feld iz encountered. This

KRR

sas of an s

value must be consulted whenever the same name appears
elsewhere in the progrm. The lncation counter values ave
aceessed in unpredictable order and therefore must be
searched for at overy ancess: v enlry e ammociated with

for finding the entry. The
table could of course be kept in siphobetical order, but
the best search techrique Iy a sorfed table requires ot lenst

b

& name which s used ax g kev

B4 Communications of the A0M

The timing in this example depensds o the model Oy
the Mod 30, the fhmings in microseconds of
fstructions are: BNTL 33 BXH, 3% BR300 47, 200 BC

b

s A sl nadtiply i

the yiven

15, The totul = 1531 microsecon

steuction on the Mod 30 takes 235 wicvoseconds, On other
medels the situation is sy clear, bul sy event al leag
fve instructions are needed: aondtiply, mask, BAH
TEULL, O oand BOL
Senelose” a BXH within o comparison because the O
mstraetion dees nob skip, bt mersdy seta the condition

Note that on this machine we eanng)

(&8 §d¢:3 ,

an average of loge N probes to fnd au itera, where N i
the size of the table. Thus, for example, o table sith 1024
entries would require an avernge of at least 10 probes 1o
find an itera by searching. One con do much hetie
than this with 2 scatter storage table.

A more waportant disadvantage of using s sorted tablg
in this application is that if items needto be lookad up
before sll of the epines are made, then either

—ihe table must be kept sorted alter each eniry s made,
with the resulting hewvy overhead Tor moking cach entry,

or

~-the tems must be looked up in an unsorted teble

cuntid all of the entries are made, at the cost ol o tre

mendous vumber of probes w find an ilem.
Hash Addressing

The fundumnental idea behind seatter storage & that the
key assoclaterd with the desired entry 5 used o looate the
entry in storage. Some translormation s performed on ihe
kev {the naree, in the exsmple abovs) o produce o
in the table to hold the key nod the entry nssoct
ated with the kev, A good transformation B one thal
spreads the caleuinted address
acddr uniformly across the available address
caloubnted adilress 1 aleeady filled with some other
s eniry hecnuse two keys happeced to be b
io the same caloenlaled address, o method is ne
resolving the eollision of kevs, and we will dissuss <overld
such methods iy what follows,

If the kevs are numes or other objects that fiL into &
single machine word, o pepular method of generting 8

ox (sornetimes called hash
w3 ihe
2 ?Hiii

3
3

heshy acdress from the key & Lo chooee some bits from the
middle of the square of the keve snough bils Lo e wed
axoan mdex to address any dtesn in the table, Biace the
valize of the maddie bits of the square depends on all of te
Bits of the key, we enn expect that differcnt keys witl give
rise o diflarent bash sddresses with high probability, mor
of less independently of whether the kevs share sosme come

Yolume 11 / Nember 1/ Janunry, 1968

nion featire, say all beginning or all ending with the same
bt pultern,

A the Keys are muliiword items, then some bits from the
product of the words making up the key may be satisfac-
Lory as long as care 1s taken that the caleulated address
does nov turn out to be zero most of the time. The most
dangerous situation in this respect i when blanks are
coded internally as zeros or when partial word items are
pudded 1o Tull word length with zeros.

A third method of computing a hash address is to cut
the key up into 7-bit sections, where # is the number of
bits needed for the hash address, and then to form the sum
of all of these seetions, The low-order # bits of the sum is
used as the hash address. This method can be used for
single-word keys as well us for multiword keys. A program
using this method appears in Appendix A.

All three of these methods of computing hash addresses
have heen in use for years with satisfactory results, but in
a new application or on a new computing machine, care
must still be taken that the computed addresses are
spread uniformly over the available table space.

Mandling Collisions

Onee some ensries have been made into a scatter storage
table, it becomes possible for the computed addresses of
different keys to be the same, causing a collision between
the storage locations allocated to each. Some other place
raust be found for ane of the items. We will initially assume
that once an item has been entered it is never moved or
deleted. So unother potential place must be found for the
new entry. In general, when the table is nearly full, many
collisions may oceur while probing the table for an empty
slot. Hence some procedure Is needed which generates
additional caleulated addresses until an empty slot is
found, probing the entire table if necessary. Of course, the
same proeedure for generating additional calculated
addresses must be used when the item is later looked up.

in practice, when a scatter storage table routine is
called, 1t is not necessary to specify whether an item is
being entered or being looked up. What is required of the
routine 13 to determine the address at which the offered
key belongs and to report whether the key was already
entered. Then the ealling routine can make the entry or
extraet the information, as appropriate. The procedure,
then, will be te generale successive hash addresses umtil
encountering either a slot that contains the desired key or
an empty stot. In the latter case, the key is entered in the
empty glot, if it i entered at all.

The possibility that several keys can generate the same
caleulated address means that the key must be stored in
the table along with its sassociated entry. For example,
when numbers are stored in an areay, the index in the
arvay uniguely specifies the storage allocated to an item.
I an application {such as a sparse matrix) where it is
kriows that very few elements in the array will actually be
used, one might advantageously use the subseript combi-
nation as 1 key and cormapute a hash address from the

Valume 11 / Number 1 / Janaary, 1968

values of the subseripts. The item can then be accessed
through the hash address. But then the subseripts associ-
ated with the number must be stored along with the num-
ber itself. For example, if A(10) were equal to 1.3, then
the corresponding table entry would most likely be a two-
word iten, one word containing the subseript 10, and the
other word eontaining the number 1.5. This is a powerful
but Tittle-known technique for handling sparse arrays, Tt
can greatly reduce the storage requirements at the cost of
increased programming complexity and longer access time.
Observe that this is a useful method for storing arrays only
when array elements are to be aceessed in unpredictable
order; it would not be a good method if malrix operations
such as addition or multiplieation were to be performed on
the arrays. :

Many methods of resolving collisions have been sug-
gested and used, and the particular method to be used in
a particular application should be chosen carefully since
the method of handling collisions profoundly affects the
efficiency of the technigue and the difficulty of the pro-
gramming task.

Table Layout

In almost every application, an entry in a scatter storage
table occupies more than one word, tyvpically at least one
word for the key and at least one word for the data asso-
ciated with the key. If an entry occupies k words and
space is required for N entries, then altogether kN words
of storage are needed. Two straightforward ways of
arranging the table are:

—t0 put each entry into k consecutive words and use
only hash addresses that point to the first word of an
entry, This can readily be done by multipiying each hash
address by & and using the produet as an index in the
table.

~—to divide the table into & sections, each with N words.
T+ 2 the hash address is used as an index in the first table
o find the first word of an entry and as an index in the

~“eond table to find the second word of an entry, and so
% rth.
“ i The only difference between these two methods is one
o programming convenience. In either case, the hash
address s used as an index in the table and not as an
ahsolute storage address.

“ince most hash-addressing schemes produce s number
of random bits to be used as an index, it is most convenient
to use only values of N which are powers of 2, For ingtance,
if the hash transformation generates { bits, one ean use the
4bits as an index in a table with space for N = 2! entries.
~gther eonsiderations apply to storage that does not have
binary addresses.

There must be some way of distinguishing an empty slot
in the table from any possible valid entry, For instance, if
zero can be excluded as a valid key, then a zero key can be
used to mean that an entry is empty. Of course the entire
table must be initiaslized to whatever state is being used to
signal empty slots in the table.

Communications of the ACM 39

Random Probing

e

An efficient and slegans method of generating suceess
caleulated addressses to handle collisions is as follows:

1. Culeulate an address 1 in the fable by using some

transformation on the key as an index.

2. 1f the itera s already at this address or if the plage

empty, the job 1 done.

3. If some other key ls there, eall @
number generator for an inkeger offset o, Make the
next probe at ! -+ g and go to step {2).

The pseudorandom namber g generator ean be of the sim-
plost sort and usually can be written In less thao six ma-
chine Instructions. It must genernte every integer from 1 to
N = 1 {where N 15 the size of the iable} exactly onece.
When the generator runs out of integers, the table w full
and the entry cannot be made.

The following will serve the purpose as 4 rendom nun-
ber generator for tables whose size s N = 27, a power of
Lwo.

Initialize an integer £ 1o be equal o 1 every tine the
tabling routine is ealled, and then on each sucesssive call
for a random number:

—get i = K =

——roask out all but the low-order 1 + 2 bits of the

product and place the resulf o A,

—seh o = B/4 and retwmn,

A seatter storsge routing using this technigue of han-
dling collisions is given in Appendix A The important prop-
erty of the pseudorandom number generator in this appli-
cation is that for evary value of 2, the numbers, pory — o4
fori <4+ %Lt <n 1, are all different, where p, 15 the
jth random number which is generated.

The efficieney of the random probing method is best ex-
preszed i terms of the average number £ of probes neces-
sary to retrieve an item in the table. This happens o be
equal to the average number of probes which were required
to enter the items originally. The nuwmber F depends on
the fraction « of the isbie w’hiﬁh is peeupied but not 0
the size of the table. If & s the size of the table, andy

peeud nrazaﬁmn

items are In the table, then o = L/V. The expectad aawghf

her A of probes nece
including the final probe,

SRR

iy 1o enter the (& -+ 11-8t item,

term i

z
where the jth the sum is the probability thet § o..
more probes are needed to enler the Hem, By induction

ok, {17 can be rewribten as

46 Coramuniegtioas of the ACM

Por large values of &, we ean replace &/
12y and approximate 4 by

A 10— ol (3
A for values of §
aversge by he

and then F s cqual to the average of
from & to b -~ 1. We ean approximate this

integral
NOPF
fﬁj =4 j}/ P
fodop 1

= (e log (1 -~ o)

)

The approximations that were made tmsure thal the sl
expected performance is slightly better t-}‘mtx i prodieted
by {4}, Some sample values of & Tor various values of o are:

Lotd faclor o B
0.1 1.05
0.5 1,38
7h 1.83
0.4 2.56

The number of probes necessary for searching o sortsd
table is greater than this for all but the tiniest tables, but
to mah o fair comparison, ovpe must include the extra fime
it takes to compute a hash neldress. This method of haw
dling sellisions iz & variant of & method due to Vyssotsky
{1j.

Deletion of entries made nsing this seheme 5 a wrouble
gome process. One cannot simply mark an entey as empty
in order to delete 1% because other entries may have collided
at that place and they would beeame unreachable. The
hash addresses for every entry i the table would have to
be recomputed and some of them moved n order to close
up the gap caused by the deleted entrv. A much more
convenient method of deie“ms 8 to reserve o speeial signal
for a deleted entry {much like the speeial sigond for an
srapty tem). On searching for a key, the search continues
i 4 deleted eniry is encountered. A new ibem can be i
stalled in place of any deleted entry encountered in search-
g for its proper place. The disadvantage of this methoed
i that the 1()%1&;) tiroe is not reduced when entries are
deleted - nnly the lost space s recinimed.

Linear Probing

The first method of generating successive calonlaied
addresses 1o be suggested in the llerature 2] was simply
to place colliding enbries as near as possible to their nomi
nally aloeated position, in the following sense. Upon colli-
sion, search forward from the nominal position (the initial
valeulsted address), until either the desired entry i found
or an emply space 15 encousbered--

senrching civeularly
past the end of the table to the beginning, if necessary, If
an ernply apacs is eneountersd, that epace beoomes the
home for the vew entry.

This procedurs & the least effertive gtrategy in eormon
uge for resolving eolliglons in terme of the average number
of probes required to retrieve an item. The reason for it
relatively poor efficiensy is that after o few eollisiona have

! Javvwey, 1966

Volume 11 /7 Nambey 1/

been resolved in this way, the entries are clumped in such
away that, given that a collision has Just occurred at loes.-
won 4, the probability of a collision at leeation | 4 1 i
higher thun the average probability over the whole table.

The cfficieney of the linear probing method can be
analyzed by techniques similar (o those used in [3] to
evaluate o relufed method. The result is that, to within
suitable approximation, the average number ¥ of probes
neceseary to look up an item o the table is

o= (1 — a/2)/{1 — &). {5)

Sample values of F are:

Toad factor o £
0.1 1.08
0.5 1.50
0.75 2.50
0.9 5.50

For values of « greater than 0.5, the random probing
method is distinetly superior. On the other hand, the
finear probing method is easier to program, and each prohe
beyond the first requires less computation.

The problem of deleting entries made in the linear
probing method is similar to the problem for random
probing. However, in order to close the gap caused by the
deleted entry, one need consider only those entries be-
tween the deleted entry and the nexl emply place in the
table; no other entries could have collided at that spot. 1f
a special mark is used for a deleted entry, then the lookup
time can be reduced as a result of the deletion by looking
at she next entry in the table. If that entry is empty, then
the deleted entry can also be marked as empty. Moreover,
the table can then be seanned backwards from that point
and every deleted entry marked as empty until an entry
is encountered that is not marked as deleted.

Direct Chaining

At a small penalty in space, another method of resolving
collisions, called direct chaining [4], is considerably more
efficient in terms of number of probes per entry than either
of the preceding methods. In this technique, part of one of
the words in each entry s reserved as a pointer to indicate
where additional entries with the same caleulated address
are to be found, if there are awy. Thus all of the entries
with Lhe same caleulated address are to be found on a
linked list {or ehain) starting at that address. The last
entry on each chain must be distinguished in some way
{such as having a zero pointer).

When a key is to be looked up, its hash address is com-
puted and then _

—if that address is empty, the key has not been en-

tered.

—if that address is oceupied, search down the chain
hanging from that address; if the key is not. encoun-
tered, it is not in the table.

When a new entry is to be made, compute its hash

address and then

Volume 11 / Namber 1 / January, 1968

—if that address 15 ewpty, iustall the item there.

—3f that address is oceupied by the head of a ehain, find
an unatlocated cell in the scatter table by any tech-
nique wharever, and place the new entry in the newly
allocated cell. Then ingert the new entry into the
chain hanging from the calculated address.

~if that address is oceupied by an entry which is not
the head of 4 chain, i.e., by an entry which is not at
its own caleulated address, then the old entry must be
maoved to another slot and the new entry inserted i
its place. Moving the old entry requires finding an
ernpty slot for it, placing it there, and updating the
chain it is on.

The principal disadvantage of this method is that
entries must be moved in storage, with all the program-
ming complexity that this implies. Observe that when a
newly entered item is to be placed on a chain, it is usually
more prolituble to place it near the head of its chain rather
than at the end of the chain.

An attractive feature of this method is that when the
table fills up, new items can be placed in an overflow area
with no change in the strategy of making entries or look-
ing them up. Moreover, as we shall see, the efficiency of
the method is still quite good even after overflow has
oceurred.

The average number E of probes necessary to find an
tem using this scheme is caleulated in [4], and is

E=1+4 a/2 (8)

where, as usual, « = k/N, k£ = number of entries, and N =
number of slats in the table. The formula (6) is still valid
when « > 1, as will happen when items are placed in an
overflow table. The efficiency of lockup depends in no way
on how cells are allocated Lo ilems on collision. Some sam-
ple values of efficiency are:

Load factor o E
0.1 1.05
0.5 1.25
0.75 1.38
¢.9 1.45
1.5 1.75
2.0 2.00

Formula (6) does not supply & fair comparison with other
methods for values of « greater than 1, since then space is
being used outside of the scatter table, but it i8 not easy
to say how the comparison should be made in this case.

A variation on this method [4] decreases programming
complexity at only slight cost in storage efficiency. The
variation is to treat every item which eollides at a caleu-
lated address as an overflow item to be stored in an over-
flow table rather than in the seatter table itself. This im
plies that items need never be moved in storage once they
are entered, but space is used in the overflow area before
the scatter table is itself full, The only inefficiency eaused
by this variation is storage inefficiency as more space is re-
quired in the overflow table. However, since there is no

Communications of the ACM _.41

sble, the sealier table con be
table which has vigid

chaiping through the seatter t
smaller. Usually it is the seatter t
storage requirements while the overflow table can
golten from any general purpose storage aliooator, which
may well be present for other uses,

The expected amount of overflow space wsed can be
ealeulated as follows: A good approximation B, p. 1] to
the number of oecupled slots n the table ulter & items have
been entered iz {1 =% where a, £, and N have their
previeus meanings. But then, since the totalof & frems have
beenn entered, the pumber which have overfiowsd 13
£ - N{ ~ e~} Therefore the total {expected} amount
of storage that has been used is

Nia +), (7

J

This factor must be taken into aceount when the $wo chain-
ing methods are compared,
The technique for deleting
as lollows:
~—an entry not stored at s ealoudnted address may be
marked empty and its former chain joined avound 1§
~-an entry sfored ab its calowlated address, bat with oo
chain hanging from it, may merely be marked emply.
~-571 entry stored at s ealeulated address with a chain
hanging {rom it must either be marked as deleted or
one of the ems on ifs chain must be moved to the
caloulated address and the chain properly fized up.

entered by chaining is

Scatter Index Tables

It iz possible to exiend the idea of treating every eolliding
item g an overflow item, namely, to place all entries in &
separate storage area in which space is allocated for entries
as needed. Then the scatier table consisis only of
pointers to the entries. We will call such » table 2 scatter
index 1able {0 emphasize that the seatter table eontaing
ries themselves, bub only pointers to the entries.
It s possible to enmbine the idea of & scatter index table
with any of the three methods of resolving collisions, but
there 1 seldom reason o use zﬁmythmg but the chalning
method. Onee the programming arrangements have been
made to allocate space as needed Irom & free storage area,
the chuirdog method is Just os easy to program as the
other methods, snd 1% 12 more efficlent.

There are & munber of advantages to keeping all of the
parate from the seatier
o Ty words, whereis 5
vt of a single word, 30
:»Ee* will consiat of single

oniby

not the

5*{:4;5 SR vit:i:

BTEE,

calier i

-awr{i items rather than the mai’i'tzm"are} spoees suitable for
wnch of the efficiency of the
ving b move

datn items. Becasuse of 1
chaining method can be regained without ha
mmw «smmmﬁ i-f; HEOTREE.

sary b m‘;im i, h entries are n.%.,uf; i th@ s««f«-t;,ﬁw
table, one would have to alloosie for sach e as much
Bpave o i edd for the largest of thern, Moreover, it ruay
well not be krnown ut the iime o key is Brst eneounterad

g4 " " & . P
42 Commuanications of the A0M

how el spuce will be required to hold the associate)
ontry,
Deleiinn of entries is trivial, An liem o be deleted

from the chain s on and relurned i

siraply removed
frea storage.

Appendix B s s program which uses the method of
genttor index tables,

Yirtual Scatter Tables

The time spent searching for an item in o table dependy
not ouly on the number of probes needed fo find the lem
but also on the time required to make a single probe. If
the kevs are at all complex, for instance, i they are charae
ter strivgs of varving length, it may take o considerabls
amount of wme 1o find out whether or nob two keys an
the same.

Tor some applications, an attractive method of deersas.
mg the amount of time needed Lo wake o ;sm?.:e: 1% Lo som.
pute a hash address suitabls for & much im‘égﬂ‘ sealler
table than i actually being used and then to place the
extrs bits in the entry. For example, if a 1024-word scatter
table is being used and a 20-bit hash address 18 computed,
then 10 of the bits can be used to address the table entry
and the remaining 10 bits placed in the entry. Then the
table can be made Lo act i some respects ax 37 it were
very lightly loaded scatter table with 2% siols,

When an entry is being looked up, compute i3z hash
adidress as usual and follow whatever collision dociring
hag been chosen, but instead of comparing kevs, first eom
pare the astra hash bits just computed with the extn
hash bits stored in the entrics. Only if the extra hash
bite are the same, need the kevs be compared. In the ex
ample above, where twive as many bits were computed
as were needed, one could expest more often than nol
that by the time the fable was flled, no fwu keys were
ever sompared which turned out 1o be different. The peob-
ability of two keys having the same hosh sddress and the
game extra hash bits is precisely the sare as the prohabil
ity that they would eollide In the larger virtual table

The expected total number of probag needed o enler
2% stemns into o table with 29 slots s equad 40 29 2 4 be
cause o = 2% and for very lightly loaded tables each of
the collision doctrines gives an expeoted average nunsbe
of probes &) = 1 4 a/2,

A seeond application of the idea of virm:"l SUALLe
i that it permits a scatter table u
during execution without mhswhmg sil of
deed, without rehashing any of the keys. In ordor to double
the size of a ,«s{:fzifif‘r table, & single pass is meade through
the old table arsl entries are placed in the lowoer or upper
half of the new table depending on whether their fowest
order extra hash bit 15 0 or LI eollisions were pesolved
by the linear method or by the rendom methed, then the
original kash Bits need to be kept in sdditinn to the extra
hash bits so that the orginal esloulated address an 12
recoverad. IT eolligions were resolved by chaining, theo
this I8 woneesssnry. O course, when the seatter table B

b increassed ii} #ize
the levs, in-

Volume 1/ Number § 7/ Jnosarey, 196

nsed as an index, no dala items need be moved, only
pointers,

A curious possible use of virtual scatter tables arises
when o hash address can be compuied with more than
aboun three tirmes a8 many bits as are actually needed for a
ealeulated address. The posaibility that two different
keys have the same virtual hash address beecomes so re-
mote that the keys might not need to be examined at all.
If o now key has the same virtual hash address as an exist-
ing entry, then the keys could be assumed to be the same,
Then, of course, there 15 no longer any need to keep the
keys in the entry; unless they are needed for some other
purposze, they can just be thrown away. Typically, years
could go by without encountering two keys in the same
program with the same virtual hash address, Of course,
one would have to be quite certain that the hash addresses
were uniformly spread over the available virtual addresses.
N¢ one, to the author’s knowledge, has ever implemented
this idea, and if anyone has, he might well not admit it.

The most important application of virtual scatter tables
is discussed in the next seetion.

Scatter Tables on Paged Machines

On some machines 1t is possible for a program to address
wore storage than is actually available to the program in
the fast storage of the machine. When an item i3 refer-
enced by the program and the item is not already in fast
storage, the block of data (called a page) which contains
the itern must be brought into fast storage from second-
ary storage, Further execution of the program is delayed
until the input operation is completed. On such a machine,
a seatter table can be defined whose size exceeds the
amount of fast storage available to the program, so that
every new access to the scatter table might cause an inpus
operation to vecur. Slow execution would result.

In such cases, it is most efficient to choose means of
accessing entries which ensure that consceutive references
to storage are as often as possible in pages that have re-
cently been referenced and thus are likely to be already
Jin fast storage.

Li the eniries themselves are kept in the scatter table,
then the linear probing method becomes more atiractive
because consecutive probes are highly likely to be on the
same page. (Page sizes are most often 1n the range from
20 to 2% words.) It may well turn out that two probes on
different pages are more expensive of time than a dozen
probes all on the same page. This consideration can be
neglected if it is known that all the required pages will
remain in fast storage.

For a really large scatter table, where it is unlikely or
impossible that the whole table can be held in fast storage,
it would almost certainly be most efficient to use a scatter
index table and keep extra hash bits along with the pointer
in the index table. Also, collisions should be resolved
within the index and not by chalning through free storage.
Since the index table consists of single-word items, many
more of its pages can be kept in fast storage—possibly
all of them. Then the program stands the chance of need-
ing a new page only when it tries to access the entry itself.
By keeping enough extra hash bits in the index, the prob-
ability of accessing an unwanted entry can be reduced as
muech as desired. Then the risk of bringing a new page into
fast storage occurs only once for each item referenced.

It would be wasteful of time to define a very large seatter
tuble on & paged machine and then to use either random
probing or chaining through free storage to resolve col-
lisions. Either method would result in the risk of bring-
ing a new page into fast storage for every probe.

REFERENCES

1. McILroy, M. D, A variant method of file searching. Comm.
ACM 6 (Jan. 1963), 101,

2, Pererson, W, W. Addressing for random-access storage.
IBM J. Res. Dev. I (1957}, 130-146.

3. Scuay, G., AXD SprurH, W. G. Analysis of a file addressing
method. Comm. ACM § (Aug. 1962, 459-462.

4. Jounson, L. R. Indirect chaining method for addressing on
secondary keys. Comm. ACM 4 (May 1961), 218-222.

5. FeLier, W, An Introduciion to Probability Theory and [is
Applications, Vol. 1. John Wiley & Sons, New York, 1950.

Appendix A. FORTRAN IV Scatter Storage Program—Random Method

PROGRAM TO LOOKUP AND ENTER DATA IN A SCATTER TABLEW

[

& THE TABLE 15 SEARCHED ACCORDING TO A GIVEN KEY.

¢ IF SUCCESSFULs AN ASSOCIATED VALUE IS RETURNED.

& A LOGICAL VARIABLE 15 SET T «TRUE. OR «FALSEs ACCORDING
© 10O WHETHER THE SEARCH WAS SUCCESSFLL OR HOT.

¢ 1N EITHER CASE, THE KEY AND AN ASSOCIATED VALUE

C MAy BE INSTALLED IN THE TABLE 8Y CALLING INSTAL.
A WORD DF ALL ZEROES MAY NOT BE USED AS A KEY,

N0 PROVISION 1% MADE FOR DELETION OF ENTRIES.

¢ [HE TABLE SIZE MUST BE A POWER OF TWC.

¢ MEANING OF $YMBOLS

¢ KEYS =~ TABLE OF KEvs ENTERED

IS VALUES{JE = VALUE ASS0CTATED WITH KEYStJ)

< REY = KEY FOR CURRENT CALL

3 VALUE = ASSOCIATED VALWE FOUND OR TO $E ENTERED
c KEYSAY + KEY USED IN MOST RECENT CALL T LOOKUP
C FOUND = «TRYEs IF KEY WAL FOUND

I FIasT = .TRUEs BEFORE FIRST CALL TO LOCKUP

[« CPLACE = CURRENT INDEX FOR TAGLE ENTRY

4 KRAND/ & s CURRENT PSEUDO~RANDOM OFFSEY

: THASH = HASH ADDRESS FOR CURRENT KEY

5 N © NUMBER OF BITS IN HASH ADDRESS

¢ WOSUZE = NUMBER OF BITS TN MACHINE WORD

Volume 11 / Number 1 / January, 1968

SUSRCOUTINE LOOKUP(KEYFOUND,VALUE)
LOGICAL FIRSTs FOURD

INTEGER WDSIZE

COMMON KEYS, VALUESe KEYSAV) KPLACE
DATA FIRST /-TRUE./

DATA WDSIZE 736/

THE FOLLOWING TWC CARDS MUST 3E CHANGED
IO CHANGE THE TABLE S1ZE.

[a¥a)

DIMENSION KEVS(1024), VALUES{1024)
DATA N /107

IF(FIRST) GO TO 91
1 IF{KEY ,EQ, 0) GO TO 99
KEYSAV = KEY

USE AS A HASH ADDRFSS THE PRODUCT OF THE KEY WITH AN
APPROPRIATE MULTIPLIER

en

KRAND = 1
THASH o
KEYA = TABS(KEY!
DO 11 1=l WDSIZEWN
11 THASH = ITHASH + KEYAZ(Z2%&{1-11}

{Please burn the page)

Communications of the ACM 43

[

LOOK AT THD ’?ﬁ):\ PI0 pLall
12

£l Y
ARGTHMER XEY, &0

MO 4 g 2R AN

EQ 3
BEY & K?i&umJ wEide £
ND o= MODIRRLRAND. IR
TERAND B2y 13 00 0

¥
%
i

Appendix B.

fes)
THE

GLELETED

wy’%f}z N FS

A rrager s gF THE

W1Ti BY ARFRD

&

FoLu O CRATE THBOWGH FEES SIORSGE UNTIL

Cammpnications of the AOM

if THE

AT
Ix *‘ﬁ“*ﬁxﬂﬁ Ehel
GCIATIO VaLus 18

FORTERAN IV Scatter Indde

iN

LO0E FURTHER

IRE. OR

WAL

v

FooM

St ADDRESS .
CTHE R o

CHANG

FHOEL

THE

ANl k3
TABLE #vy

THE

i%

2y

{

A FALSES

MUST B

DIMENAHTON KL

TFIREY W ME. REY0AV) GO
SERPLATEY w RKETHAY
oa AL UE

LAl ERROR

BT

END

x Table Program

FOUND DR osHTIL T END OF TH

TFIFSLINPROBE 1) 2604 XL
EFFSLIKPROBEY +EGs U3 O
» K PROSE

= FRLIEPROAELD)

K
53 FOURD = #FALSE.

RETLENM
T INITYALIZE L1s7
L “ER)

% 5 513 - 2

D 92 1=1e%a3

Fxyqir = wFRLE
K KFREE = |

F51F = Ze%N

DD O3 e 1512
23 TABLELTY = O

FIRET = WFayLsE,

50 TO 1

EMIRY IHDTALIKEY . WALUE Y
2 CHETK FDR PROPER KEY AND (nf
L 15 ALREADY TmMIRL OR ADY.

JFREEY W8E, RETSAVY 45 10

(Fixpa Gy GooT

IS0 ERSaadl 0 B0,

<

-

ALLOTATE

LHE S

Sk s

IF e Fy
RPROHE

Exiay DELETEINEY

iE
¥

R

FOR R

LY wHE e vEVSAV L0 10
ALY oME. FLLIEPRONT W1y,

Pl LHR TR ABD RELTOME In

[51

A0Pedy VALUES{IGZS

TO

TH

LA(E S

METING DNBTAL IXE T WAL UES
S ¥ Gy VA UE S . REYSAV. RWLACE

AbE

G

Yo THANGE YHE

CHAIN 15 BEALHED,
BT 3L
TG ey

Ak THER XKE vy

SPACT TQR TRE NEw FNIBY

94

£

o0y

LEACE

LI AL .

TALL
530

#dy

Volume 11 /

snker 1/

RILATY ¢ i

