SECRECY, AUTHENTICATION, AND PUBLIC KEY SYSTEME

A DISSERTATION .
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPRY

By
Ralph Charles P’;erk] e
June 1979

Scanned May 2005 by
Cryptography Research, Inc.
with permission from the author.

http://www.cryptography.com

..... LS R T v b e e . Wl ety .,...-..\-_.‘;-,,...ﬂ,..}-.‘;*,;..._ -
- [e e L

@ Copyright 1979

by

Rzlph Charles Merkle

ii

I certify that I have read this thesis and
that in my opinion it is fully adequate, in
scope and gquality, as a dissertation for
the degree of Doctor of Philosophy.

SR S bl W (W

-

bot—€ (00 .

Martin E. Hellman

I 'certify that I have read this thesis and

that in my opinion 1t is fully adequate, in
scope and qguality, as a dissertation for
the degree of Doector of Philosophy.

John T, Gill TII

I certify that I have read this thesis ané
that in my opinion it 1is fully adequate, in
scope and quality, as a dissertation for
the degree of Doctor of Philosophy.

el gm/ﬁ—??

Forest Baskett III ~

Approved for the Unlver51ty Committee on
Graduate Studles:

W T3 oot

Dean of Graduate Studies

iid

ACKROWLEDGEMENTS

It is the author's great pleasure to acknowledge the aid,
the help, the assistance, and the support of: my fellow gradu-
ate students. Steve Poblig, Raynold Kazhn, Dov Andleman, and
Justin Reyneri; Bob Fabry and Jim Reeds on the fzculty at U.C,
Perkeley; the independent and imaginative Nhit Diffie; the ever
helpful Charlotte Coe; my fellow Berkeley students Peter Blat-
man, Bruce Englér, Frank Olken, and Loren Kohnfelder; the love

and support of Carel Shaw; and my mother, who knew I could do
it all along.

I would like to give my special thanks to Martin Hellman,
whose support made/it possible and who encouraged me when it
couﬁted most: Wwhen little wes known and much.was doubted.

Thanks are zlso due to the National Seience Foundstion for
it's support of the work described in qhapter's-III. Iv, VI,
VIiI, VIII, IX and X under grant ENG-10173: and to the U.S, Air
Force Office of Scientific Research and the U,3., Army Research
Office for their support of the work described in chapters 1II,

V and VII under contracts FU9620-78-C-0086 and DAAG2O-TE-C-

0036.

6/4/79 iv

YRIT.

XIv,

Table of Contents

Introduction....ovvven., rramearan Cerareans 1
Cne Wav Hash Functions.. .. veicecoenasanrana 11
Publiec Key Cryptosystem Using Puzzles....l€
Public Key Distribution Using Puzzles...... 21
A Certified Digital Signature........v.ev.e. 22
The Trazpdoor Knapszck..... Crarsesisanaen &z
How Zecure is the Trapdoor Knapsack®....... g2
An NF-comrlete Conventional Cipher........ 105
Pretocols for Public Key Cryptosystems....112
Cr the Security of Multiple Eneryptior....182
ConclUSIOnE. i cinerannnans ceeaaan farasraean 150
Piblicgraphy.v-cvansvnnn-- PrsesEnarear s 151
APPENDICES
FC Code to Generate Trapdoor Knapsacks....i%7
Examples of Trapdoor Knapsacks............ 1€5

A CPIEEY X SRS LINTSCEE

I. INTRODUCTICN

1. Introduction

Cryptography is a fascinating subject, even more so today.
than in the past. The new and once unthinkable ideas of public .
key distribution and digiltal éignatures have opened up new
fields of research, and new possibilities for the marketplace.
To be one of the first to venture into this virgin territory
has been a great privilege.

This thesis presents the findings of work done between
fall of ?97“ and spring of 1979.

Chapters IJI a2nd IV describing the "puzzle" methods are
now primarily of pedsgeogicel and. historical interest: they
were the first break in what at that time appeared to be a
smooth and solid well.

Chapter VI, on the trzpdoor knapsack, deseribes the second
real breakthrough, (the first was the key distribution metheod
based on expenentiation developed by Hellman) and represents
work done in the summer of 1976.

Chapter V, on a certified digital signature, was conceived
in the summer of 1977. fo some extent it represents frustra-
tion over the difficulties of extracting signatures in a eclean
and reliable wzy from the trapdoor knapsack.

Chapter VIT is a2 follow up on chapter VI. Tt attempts to
provide reasons for believing that the trapdoor knapsack is ac-

tﬁally secure, The author is, of course, gquite convinced it is

6/u/7% Chapter I Page 1

INTRODUCTION

secure; but inventors heve traditionally been blind to the
weaknesses and obvious faults of their ecryptographic inven-
tions. It has therefore been very encouraging to hear from
others that they have faziled miserably in attempts to analyze
it.

Chaptgr I¥ on protocols provides insight intoc the problems
and techniques of sctually using public key systeﬁs.

Chapter VIII describes an essentislly NP-complete conven-
tional ecryptosystem, a theorefical result which might provide 2
useful avenue for further research aimed at getting proofs of
security. -

Chapter X describes a cryptanalytic methad for breaking an
apparent improvement which has been suggested to the DES. Its
deseription of potential weakness in a particulsr scheme for
multiple encipherment carries with it a siﬁple meral: simple

extensions or medifications to a cryptographie algorithm can

have unexpected weaknesses.

6/4/79 Chapter I Page 2

INTRODUCTION

2. Conventional Cryptography

Conventional cryptographic systems provide secrecy and au-
thentication to information which may be overheard or modified
by wnauthorized third parties. This is done by encrypting (or
enciphering) the plaintext P with a key K to produce the
ciphertext C: SK(P) = C, where SK denotes the enciphering func-
tion under key K, Only authorized use;s know K, and so only

1

they can decipher C by computing P = SE (C). Although unau-

thorized users know F and the set of functions {SK}, this does
not allow them eith;r to determine P or to modify C to produce
a C' which deciphers to 2z meaningful message.

The security of such systems resides entirely in the key
K; A1]1 other components of the system are assumed to be public
knowledge. To maintain security, the legitimate users of the
system must learn K, while preventing others from learning it.
To’date, this has been done by sending K to the legitimate
users of the system over special physicelly secure communica-
tion echannels, e.g., registered mail or couriers. The flow of
information in 2 conventional cryptographic system is showm in

figure 1.

6/4/79 Chapter T Page 3

UL e -;‘_‘.‘.:T‘tl,l :

SR e e

Kaatra Tt SR

LENVEREL

v¢ 39vd

"WILSAS AIVAINd JIHdYHO0LdAYD Y

NI NOILYWJOINI 40 MO14 JHL

T 914

01 LdAYIAC

NOT1dAYINA

. 4

43ddOHUSIAV3

HIanNas

.-.:.r..na‘

INTRODUCTICON

3. Public Key Systems

The reader interested in public key cryptography is re-
ferred to [Y4] for an excellent tutorial overview. B5So that this
thesis is self contained, two sections from that paper are
reproduced below witﬁ only minor changes to introduce the con-
cepts of publiec key systems and digltal signatures.

The difficulty of distributing keys has been one of the
major limitations on the use of conventional cryptographic
technology. 1In oqur for the sender and receiver to make use
of a physically secure channel such as registered mzil for key
distribution, they must be prepared to wait while the keys are
sent, or have made prior preparation for cryptographic communi-
cation,

In the military, the chain of command helps to limit the
number of user-pazir connections, but even there, the key dis-
tribution problem has been 2 major impediment to the use of
ceryptography. This problem will be accentuated in large com-

mercial communication networks where the number of possible

connections is (n2-n)/2 wﬁere n is the number of users. A sys-
tem with one million users has almost 500 billion possible con-
nections, and the cost of distributing this meny keys is prohi-
bitive.

At this point we introduce a new kind of cryptographic

system which simplifies the problem of key distribution. 1Tt is

6/4/79 Chapter I Page U

INTRODUCTION

possible te dispense with the secure key distribution chznnel
of figure 1, and communicate over the insecure channel without

any prearrangement. As indicated in figure 2, two way communi-

RRRFIT N Yoy

cation is allowed between the transmitter and receiver, but the

eavesdropper 1s passive and only listens. S8ystems of this type

ére called publie key systems, in contrast to conventional sys- fﬂ
tems.

The reason that keys must be so carefully protected in

-1
ca

conventional cryptographic systems is that the enciphering and
deciphering funections are inseparzble. Anyone who has access
to the key in orde;’to encipher messages can also decipher mes-
sages. If the enciphering- and deciphering capabilities are
separated, privacy can be achieved without keeping the enci-
phering key secret, because it can no longer be used for deci-
phering.

h The new systems must be designed so that it is easy to
gengrate 2 random pair of inverse keys E, for enciphering, and
D,- for deciphering, and easy to operate with E and D, but com-
putationally infeasible to compute D from E,

A public key cryptosystem is a pair of families {EK} and
{DK} for K in {K}, of algorithms representing an invertible

transformetion and its inverse defined such that:

1} For every K in {X}, DK is the inverse of EK' That is,
DK(EK(M)) = M, for any K and any V¥,

2) For every K in {K) and M in {M}, the values EK(H) and

6/4/79 Chapter I Page 5

Eyr—--.-n_,‘._.,-f-._.u‘
- b

vS 39vd
'WALSAS AT 217dNd
Y NI NOILYWMOANI 40 MOd 3HL
Z 914
Z# 304N0S T# 304N0S
AT AT
v | -
, .
YN - y3cLwsiveL 14
v
¥3dd0YaSIAY3

INTRCDUCTION

DK(H) are easy to compute.
3} For nearly all X in {K}, any easily computed algorithm

equivalent to DK is computationally infeesible *to

derive from E..
4) For every K in {K}, it is fessible to generate the in-
verse pair EK and DK from X,

The third property allows a user's enciphering key E, to

K
be made public without compromising the security of his secret

deciphering key DK' The cryptographic system Is ther?fore
split into two pargg. a family of enciphering transformations,

and a family of deciphering transformetions in such z way that

given a3 member of one family it is infeasible to find the
corresponding member of the other.

The fourth property gusrantees that there is a feasible
way of computing corresponding pairs of inverse transformations
when no constraint is placed on what either the enciphering or
deciphering transformation is to be. In practice, the crypto-
equipment must contain a2 true random number generator (e.g., 2
noisy diode) for éenerating K, together with an algorithm for
generating the EK--Dk pair from K.

A system of this kind greatly simplifies -the problem of
key distribution. Each user generates a pair of inverse
transformaticons, E and D. He keeps the deciphering transforma-
tion D secret, and makes the enciphering transformation E pub-

liec by, for exasmple, placing it in 2 public directory similar

6/4/79 Chapter I Page 6

Ih___

LT T e T T R S I P - L et i e g Pmddanpam e pomr §Teqleert n .
. T A T A T L R T IR Ay .,..;'.;,'.i?‘-r'..:a.,f.;n:..,,.f.a,-f_c,;‘-a_‘(.;u_u,‘n‘

INTRODUCTION

to a phone book. Anyone can now encrypt messages and send them
to the user, but no one else can decipher messages intended for
him.

If in addition to conditions 1) -~ 4) above, the set of

transformations satisfy

1') For every K in {K}, EK is the inverse of DK' That is

for eny K and any M, EKDK(F) = M,

It is possible, and coften desirable, to encipher with D

and decipher with-E. For this reason, EK is sometimes called

the publie key, and DK the secret (or.signing) key. E
<
A
¥
E
]
t
Hd
¢
7

6/4/79 Chapter I Page 7
il

| [S

INTRODUCTION

4, bigital Signatures

A éecond difficulty which has limited the application of’
conventional eryptogrephy is its inability to deal with the
problem of dispute. Conventional authentication systems can
prevent third party forgeries, but cannot settle disputes
between the sender and receiver és to what message, 1f any, was
sent.

In current commercial practice, the validity of contracts

and agreements is guaranteed by bhandwritten signatures. 4

-

signed contract serves as proof of an agreement which the holde
er can present in court 1f necessary, but the use of signatures
requires the trensmission and storage of written documents: a
mzjor barrier to more widespread use of electronic communica-
tions in business,

The essence of & signature is that although only one per-
son can produce it, anybody can recognize it. If there is to
be a purely digital replecement for this paper instrﬁment, each
user must be able to produée messages whose authenticity can be
checked by anyone, but which c¢ould not have been produced by
anycone else, especially the intended recipient. In a conven-
tional system the receiver suthenticates any message he re-
ceives from the sender by deciphering it in a key which the two
hold in common. Because this key is held in common, however,

the recelver has the azbility to produce any cryptogram that

6/4/79 Chapter I Page B

g
|
g

LYY P

-

| F——

INTRODUCTION

could have been produced by the sender and so cannot prove that
the sender actually sent a disputed message.

Public key cryptosystems provide 2 direct solution to the
signature problem, if they satisfy condition 1f). Systems
which almost satisfy 1') are also usable (see chapter VI).

If user A wishes to send a signed message M to user B, he
operates oﬁ it with his private key DA to produce the signed
message £ = DA(H). DA was used as A's deciphering key when
privacy was desired, but is now used as his "enciphering" or
"signing™ key. ~When user B receives & he can recover ¥ by
operating on S with A's public key EA'

B saves & as proof that user A sent him the particuler
message M. Tf A later disclaims having sent this message, B

can take S to a judge who obtains E, and checks that EA(S) = M

A
is 2 mezningful messsge with A's name a2t the end, the proper
date and time, etc. Only user R could have generated 2 because

only he knows D_, so A will be held responsible for heving sent

It
M.

This technique provides unfcrgesble, message dependent,
digital signatures, but sllows any eavesdropper to determine M
because only the public information EA is needed to recover M
from S. To obtain privacy or_communication as well, A ean en-
crypt S with B's public key and send EB(S) instead of S. Only
B knowus DE" so only he can recover S and thence M. B still

saves S5 as proof that user A sent him M.

Other methods of generating digital signatures which do

6/4/79 Chazpter I Page 9

wrFANFORPD IRRARIESR

INTRODUCTION

not depend on public key cryptosystems have been suggested [6],
[19] and Chapter V.
[Note: This concludes the two sections taken largely from .

[41.]

wIANEORD I IBRARIER

6/4/79 Chapter 1 Page 10

O
A

II. ONE WAY HASH FUNCTIONS

- There are many instances in which a large data field (e.g.

-10,000 bits) needs to be authenticated, but only a small data

fleld (e.g. 100 bits) can be stored or authenticated. (See,
for exemple, chapter V). It is often reéuired that it be in-
feasible to compute other large data flelds with the same image
under the hash function, giving rise to the need for alggg way

hash function.

Intuitively, a one way hash function F 1s one which is
easy to compute but difficult to invert and can mep arbitrarily
large data fields onto mﬁch smaller ones. If y‘= F(x), then
given x and F, it is easy to compute.y, but given y and F ‘it is
effectively impossible to compute x. More preci;ely:

1) F can be applied to eny argument of any size. F ap-
plied to more than one argument (e.g. F(x1:x2)) is
equivalent to F applied to the concatenation “of the
arguments, i.e. F(<x1.x2>).

2) F always produces a fixed size output, which, for the

sake of concreteness, we take to be 100 bits. e

¥

3) Given F and x it is easy to compute F(x).

4) Given F and F(x), it is computationally infeasible .to

A

dete:’minex.i

5) Given F and x, it is computationally infessible to

find an x' & x such that F(x) = F(x').

The major use of one wey functions is for zuthentication,

6/4/79 : Chapter II Page 11

-
3
£

s
N
3-
i

CwWYANFORD LIBRARIER

i

ONE WAY HASH FUNCTIONS

If a velue y can be éuthenticated. we can authenticete x by

ccmpuﬁing

F(x) =-y
and suthenticating y.
¥o other input x' ean be fouhd (slthough they probably exist)
which will generate y. A 100 bit y can authenticate an erbie
trarily large x. This property is crucial for the convenient
asuthentication of large amounts of information. Although a 100
bit y is plausible, selection of the size in a real systém in-
volves tradeoffs between the reduced cost sand iﬁproved effi-
ciency of a sﬁaller size, and-the improved security of a larger
size. l i

Because y is used to authenticate the corresponding x, it
would be intolerable if someone could compute an x! su?h that ¥
= F(x) = F(x"). The fréuduleﬁt x' could be substibuted ;or the
legitimate x and would be authenticated by the same informa-
tion. If y is 1h0 bits long, an interloper must try about 2100
different values of x' before getting a value such that F(x')’;’
Y. In an actuzl system, F will be applied to many different
values of x, producing many different values of y. As a conse-

gquence, trying fewer thgn 2100 different values of x will prob-

A

ably yield an x!' sucﬁﬁthat F(x') = y for some aiready authenti-
cated y. To take a concrete example, assume F has been applied
to 2"0 different values of x, and produced 2"0 corresponding
values of y, each of which has been zauthenticated. Il the y's

are 100 bits, then a random search over 260 values of x would

6/4/79 Chapter II Page 12

i
1
i
¥
]

!
P
12
B
A
Re.
[

-

e

L

e oy ANMFORD LIBRARIES

.

TS PP
IR

ONE WAY HASH FUNCTIONS

probably yield an x' such that y = F(x) = F(x') for seme value '

of Y. Whilglthis search is still difficult, it is easier than
searching over'2100 different valﬁes of x. This demonstrates:
that y might have to be 1ohger than expected in a heavily used
system. Foreing an opponent to search over ail 2100 different
values of x would be more desirable. This can usually be done
by using many different funétisns, F1, F2. esss The effect of

using many different one way functions is to prevent analysis

of F by exhaustive techniques, because each value of x is au-

~ thenticated with a distinet f&. This will significantly in-

crease security.‘yet requires only minor changes_in implementa-

{

tion.

Funetions such as F can be defined in terms of convention-

al eryptographic functions [6]. Assume we have a conventional

“

encryption function C(key,plaintext) which has 2200 bit key
size and encrypts 100 bit blocks of plaintext- into 100 bit
blocks of ciphertext. (It is 2z common misconception that the
/

key can be no larger than the pleintext blocksize, but as ﬁh
example the DES can be regarded as having a T68 bit key and a
64 bit block size). | |

We first define fo,gwhich is simpler than F and which sa-
tisfies properties 2, 3, 4, and 5; but whose input x is res-
tricted to be 200 bits. We define

Folx) = y = C(x,0)
F0 accepts a 200 bit input x and produces a 100 bhit output v,

as desired. Furthermore, given y, the problem of finding an x!

6/4/79 Chapter II Page 13

ot e :
B WENURE Wk ..t 1

e
P)

B Ed i N,

[B

ONE WAY HASH FUNCTIONS

such that F(x') = y is équivalent to finding a key x' such that
y = C(x',0). If C is a good encryption function, this is com-
putationallf infeasible.

If the input x to F is fewer than 200 bits, then we can
npad" x by adding O's until it is exactly 200 bits, and then
define F = F[}' If the input is more than 200 b:fts, we will
break it into 100 bit pieces. Assume that

X T Xyy Xy eee X

2? k
and that each X, is 10C bits long. Then F.i1s defined in terms

of repezted applications of FD. Fo is first applied to Xy and

x, to obtain y. = F(x;,%,). Then y, = IT:D(Y1.33), vy =

- - 1
Fo(ye.xu). Yy = Fo(yg.xS). e ¥; T Fo(yi_.l.x. Yy ene

iv1’" Yg-1 ©
Fo(yk_z.xk). F(x) is defined to be Vi1l the final y in the /
series. If x is not an exsct multiple of 100 bits, then it is k
padded with 0's, as above. . w

It is obvious that F can accept arbitrarily large values
for x. Although complexity theory has not progrese:ed to the
point wher‘e it is possible to prove that it will be computfi/
tionally infeasible to find any vector x' 'not., equal . to x such
that F(x) = F(x'), 2 plausibility argument can be made induc-

v
tively thet this is the ?ase. As a basis, when k = 2, the pro-
perty holds because ﬂl;-(_i) = Fo(x1,x), and the‘ property holds
for I-‘U'b:,r assumption. We establish the case for k = 3 by con-
tradiction. We assume that F(x1,x2.x3) = F(x1'.x2'.x3') and
that X5 £ xi‘ for some i in {1,2,3}. We first note that

_ e . '
F(x1.x2,x3) = Fo(y1.x3) by definition. If either ¥y Z yq' or

6/4/79 - Chapter I1 Page 14

caaty e B

pu e A

~

ER e

[

B ¥

R

e

ONE WAY HASH FUNCTIONS

1 - 1 1 i '
Xg o x3 , and Fo(y1,x3) = Fo(y1 1¥3), then_wg have violeted

assumption 5 made about FO; Ir ¥q = y1' and x3 = x3'. then ei-

_ o , _
ther X, # x1' or X, £ x5 By definition . Fo(x1.x2) = ¥qs and
FO(x1',x2') = y1'. 50 Fo(x1,x2) = FD(x1',x2') and again we con-

tradict assumption 5 mede sbout F,. This line of logic can be . ‘Y

—-—
e

extended to the cases k = 3, 4, 5, ‘ ' ¥
This argument cannot be made fully rigorous until the pro-

perties of F, are mede rigorous. This must await further ad-

vahces‘in complexity theory.

|
]
—
e
. . -
I,
s SRS ANFORD LIBRARIEE .o i iiinliininiini

o i i R

s

4

f
—
. !
4 -

6/4/79 ' Chapter II Page 15

W‘&.‘fﬂ-ﬁ‘ll‘ﬁﬂhét—ur#u- [

III. A PUPLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

This chapter describes the first publie key distribution

system and the first public key cryptosystem, which were both

based on the concept of 2 "puzzle".

Puzzles can be used in a2 variety of ways to make public
key distribution systems where the effort involved to break the
system grows a2s the square of the effort to use the system.
The method described in chapter IV is not the simplest, but was
selected becazuse it reaquired the least memory and was deter-
ministie. (As an interesting =2side, Ron Rivest sent the azuthor
a letter mentioning this fact, and described 3 simpler system
which was, in fact, the system the auvthor originally devised.)

As originelly conceived, the method wes more closely
linked to the concept of 2 one way function and was probsbilis-
tie in nature., Pasically, it centered on the observation thet
if two pepple rendomly select n numbers from a space of n2
numbers, there is 3 sigrificent probability that both will have
selected 2t least one number in common. This is closely relzt-
ed to tke "birthday probtlem" [41]. Given n peeple in & room,
what is the probesbility thet 2t lezst two of them were born on
the same day? The probzbility becomes surprisingly bigh when
there are more than sguare reoot(3€65) £ 20 people in the room.

This surprising stetisticel result can be used for public
key distribution rather eesily. If A and B wish to zgree on z
common key, then each selects n numbers from e space of n2
numbers. The probagbility that they selected 2 common number is

significant and if A and P can determine this common number it

€/4/79 Chapter TII Page 16

SIANEORL LIBRARIES

A PUBLIC KEY CRYPTOSYSTEM EASFD ON PUZZLES

can be used a5 a c¢ryptogrephic key in further communications.
Note that the number of possible keys is n2, s0 anyone who
tries to breazk this method must search through all n2. rather-
than the 0{(n) keys that A and B know.

A and P determine the common number zs follows: A applies
8 one way funciion F to hide each of his n randomly chosen
numbers, and sends them to BE. B applies F to hide his randomly
chosen numbers znd sends the result to A. A and B can now sort
both lists of hidden numbers, and look for 2 match. If A and B
chanced upon the same number, then the hidden version of this
number computed by £ and P will be the same. 211 that E knows
is the hidden versions of the numbers. E c¢2n ezcsily look
throvgh A's and B's hidden numbers and find the mstch, but then
E must search thrcugh 211 nE possible values to find the origi-
nzl vezlue, which is vsed =5 the key. A and P, on the other
hand, zlready KNOW the original values, because they generated
the hidden values by applying F to numbers they knew.

The next phegse in the evolutionary develiopment of the
method was to create a deterministie version of the original
method. This is done fairly easily. Instead of selecting n
numbers from n2 possibilities completely 8t random, select one
number randomly in the raznge from 1 to n, the second number
randomly in the range from n+1 to 2 - n, the third number ran-
domly in the range from 2 » n + 1 te 3 - n, the ith number from
the range (i-i1) * n + 1 fo I - n, .and the nth number from the

range {n-1) *n+ 1 ton * n. This guarantees that there must

6/4/79 Chepter IIT Page 17

SIANFOID LIBRARIES

4 PUBLIC KEY CRYPTOSYSTEM BARED ON PUZZLES

be one number in eazch of the n possible ranges. By picking a

random range, and then searching sequentially through all pos-

5ible numbers in that range, a “eeollision™ must occur. In oth- .

er words, A picks a3 single number randomly from each range,
hides them, randomly permutes their order end transmits the
permuted hidden velues to P. B picks & random range, hides all

n numbers in thet range, but does not send the result to A.
Instead, E looks for & match between the hidden numbers 4 sent,

znd the hidden numbers B just generated. VWhen P finds the
match, P sends the hidden value beck to &, whe compares this
single hidden numter =2gzinst the n hidden numbers A generated.

The method now deterministically achieves an n2:n ratic of ef-

fort (work factor). However, it still requires 2 great deal of

memory.

The method deseribed in chapter IV was the next eveolution-
ary step beyond this.

The “Ypuzzles" method also evolved into the first publie
key cryptosystem. Basiczlly, the enciphering &nd deciphering
keys are just explicit tabular representztiens of randomly
chosen enciphering end deciphering funetions. The only modifi-
cation is to the enciphering key. It cannot be represented in
2 simple tabular formet, because this would 2llow it to te in-
verted too easily, i.e., the public enciphering key must be
hard to invert, snd & tebular format is not hard to invert, so

the teabular formest must be extended somewhzt, This is done Dby

E/L/79 Chapter IIT Page 18

SIANFORD LIBRARIES

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

enpuzzling the eleternis of the range.

First, we define the enpuzzlement of an argument by the
function:

P(x,n}

where x is the value to be epnpuzzled, and n represents the
difficulty of breaking the resulting puzzle. P{245,85) means
that the number "“2WE" ¢can be recovered by putting in 45 units
of effort (on average).

A sme2ll enciphering key; which maps plzintext 1 into
ciphertext 7, plaintext 2 into ciphertext 3, ... and plaintext

R into ciphertext 5; is shown in figure 1, with n = 8.

The Enciphering Key

SIANFORD LIBRARIES

1 P({7,8)
2 P(3,8)
3 P(6,8)
Y P(8,8)
5 P(1,8)
6 P(u,8)
7 P(2,8}
8 P(5,8)
Figure 1

Note that it recuires C€(n} units of effert to compute

6/5/79 Chapter TJI Page 19

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZILES

E{plaintext) from this tabular representatien, but that comput-

ing D{ciphertext) requires O(nz).

The corresponding secret deciphering key is shown in fig--

ure 2.

The Deciphering Key

1 5
2 7
3 2
i 6
5 8
6 3
7 1
2 H
Figure 2

The secret deciphering key is not enpuzzled, and so it is
easy to ecompute D(ciphertext) from it, {er to compute
El{plaintext), but this is largely beside the point)., Making
the enciphering end deciphering keys can be done in 0(n) time,
enciphering reguires O(n) time, deciphering can be dene in unit

time, but bresking the system requires O(nz) time.

6/U/79 Chapter IIT Page 20

SIANFOKD LIBRARIES

IV. PUBLYC KEY DISTRIBUTION USING PUZZLES

1. INTRODUCTION

Tnis chapter describes the first public key system ever

developed. Until this system, it had been assumed thzt a

necessary precondition for eryptographicelly secure communice-
tions was the transmission ¢f a2 key, by secret means, prior to
an attempt to communicate securely. The system described below,
however, z2llows two communicants to select a key publiely, but
in such 2 fzshiorn that no one else can easily determine what it
is.

The body of the chapter will begin with 2 deseription eof a
conventiongl cryptogrephic system, in which secure transmission
of the key is reguired. It will then ‘develop the new concept
of a public key system. Tne implications of public key systems
will then be explored in more detail, with the gid of some ex—

amples.

6/U/76 Chapter IV FPage 21

STANFORU LIBRARIES

PUBLIC KEY DISTRIBUTION USING PUZZLES

2. REVIEW

We introduce three protagonists into our paradigm: A and
B, the twe communicants, and E, the enemy, whe wishes to find
out what A end E are communicating. A and P have available 2
conventional eryptographic system for encrypting 2nd decrypting
messages thet they send to ezeh other. A, B, and E all know
the general method of encryption. A and B 2lsc have available
a normz! communications channel, over which they send the bulk
of their messages. To z2llow A and P to communicate securely,
they must lozd 2 key, which is unknown to E, intc their erypto-
graphic devices. The general method uses this key as a parame-
ter, and will perform 2 particular transformztion on messages
for & perticular key. Becguse E does not know this key, he
cannot perform the pertiecular transformztion, and thus cannct
encryps or decrypt messages.

£ z2nd P must both know what the key is, and must insure
that E does nct know what it is. In the traditional paradigm
for eryptography, this situation comes gbouvt by the transmis-
sion of the key from A to P over some special znd secure com-
municetions channel which we shz2ll refer to as the key channel.
E cannot intercept messages sent on this channel, and the key
is therefore safe.

The key channel is not used for normszl communications be-
cause of its expense and inconvenience.

In view of the central position that the key channel will

6/u4/70 Chapter IV Page 22

SIANFCRD LIBRARIES

PURLIC KEY DISTRIBUTION USING PUZZLES

occupy in this chapter, it would be wise to stete, somewhat
more clearly, the conditions which it must satisfy. There are
two such conditions.

1Y E cannot modify or alter messages on the key channel,
nor can ke inject false or spurious messages.

2) E is unable to determine the content of any message
sent over the key cheannel, i.e., E cannot intercept
the messages.

Systems of this type are referred to as conventional ecryp-
tographic systems, and their study detes back to antiquity (See
Shannon [25] for 2 good overview), We now mzke & modification

which had not previously been considered.

/4770 Chapter IV Page 22

DIANFORU LIBRARIES

PUBLIC KEY DISTRIBUTION USING PUZZLER

3. THE NEW APPRCACH

We modify the traditional paradigm by dropping the second.
restriction on the key channel, but not the first. We no
longer demand that E be unable to learn what is sent on the key
channel, rather, we assume that E has perfect knowledge of
everything that is sent over this chennel [footnote page 31].

Although in some instaznces the key and normzl channels may be

one znd the seme, we shall treat them a2s logically distinct.

It is the thesis of this chapter that secure communica-
tions between & and E can teke plzce under the conditions we
have just described.

The reader should clearly understend thet nc key lurks in
the background. There is no methed by which A znd B can com-
municate other than the normel channel 2znd the key channel.
Trhey heve mazde no secret preparations prior to the time that
they wish to communicete securely.

We must carefully consider what constituies a solution.
IT A znd B eventually agree upoh & key, and if the work re-

-

quired of £ to determine Lthe key is much higher than the work
put in by eitbher A or P to select the key, then we have a solu-
tion, HKote that E can determine the key used in most conven-
tionzl ecryptographic systems (with the exception of the one
time pad) simply by trying 211 possible keys and seeing which

one produces 2 legible message, Powever, the zmount of work

required grows exponentially compared to the amount of work put

€/u4/79 Chapter IV Page 2Y

ﬁ—__

SIANFORLD LIBRARIES

PUBLIC KEY DISTRIPUTICN USING PUZZLES

in by A or P. The publie key soluvtion gescribed is not ex-

ponential, but the amount of work required of E to determine

the key increases as the square of the amount of work put in by .

A and P to select the key. Methods which appear to foree E to
put in an amount of work which grows exponentislly with the
amount of work A 2nd B put in have been discovered since the
conception of this method. While this method is therefore not
25 practicezl, its simplicity makes it the most nearly provably
secure system end the best for pedagogiczl purposes, It relies

on 1ittle more than the existence of one wey functions.

6/4/79 Chapter TV Page 25

SIANFORY LIBRARIES

PUBLIC KEY DISTRIRUTION USING PUZZLES

4, THE METHOD

The method is based on the concept of 3 puzzle, that is, a
cryptogram which is meant to, be broken. To solve the puzzle,
we must cryptanzglyze the cryptogram. Having done this, we
learn the informetion that was "“enpuzzled", the plaintext of
the eryptogram. Just as we can encrypt pleintext to produce =
cryptogram, so we can enpuzzle information to produce a puzzle.
Ek puzzle, though, is meant to be solved, while idezlly, a cryp-
togram cannot be cryptenzlyzed. To solve 2 puzzle, all you
need do is put in the required amount of effork.

To sherpen our definition, we will consider the following
method of creating puzzles. First, select a strong encryption
functior. We are not interested in the details of how this en-
ervption function works: our only interest is that it does
work. The resder can select zny eneryption function that he
feels is perticulerly strong and effective. A concrefte example
might be the DES encryption function [24], which with a longer
key is currently felt to be quite strong.

After selecting an encryption'function, we crezte our puz-
zle by encrypting some piece of informstion with that function
with a key chosen st random from & specified subset of the
keyspace. We eartificially restrict the size of the key space
used with the encryption function to meke the puzzle solvable.
If the key is normally 122 bits, we might use only 20 bits znd

set the remeining 98 bits to D. While searching through 2128

6/4/79 Chapter IV Page 26

SIANFOHD LIBRARIES

PUBLIC KEY DISTRIBUTION USING PUZZLES

possible keys is completely infeasible, searching through 23O

is tedious, but quite possible. We c¢can control the difficulty

of sclving a puzzle, simply by changing the restriction on the

size of the key space used. To make the puzzle harder to

solve, we might select a 40 bit key, while to make it easier,
we might select a 20 bit key. VWe assume the strength of the
underlying encryption function is adequate to insure that our
puzzle czn only be solved by exhaustive search through the res-
tricted key space, and we can then adjust the size of the key
space to precisely control the difficulty of solving the puz-
zle,

There is still one more point thet must be brought out.
In cryctenalyzing an encrypted message, the cryptznalyst relies
on redundancy ir the message to indiecate when the proper key is
tried. If the information we enpuzzle is random, there will be
no redundency, and thus no way of solving the puzzle. We must
deliberetely introduce redundency into our puzzle, so that it
can be solved., This can be done essily enough by encrypting,
glong with the informetion, a constant thet is publicly stated.
When we try to deecrypt the puzzle with & particular key, the
recovery of this constant cen be taken as evidence that we have
selectecd the right key, and thus have solved the puzzle. The
absence of the constant part in the decrypted puzzle guarantees
that we hzve used the wrong key, and should try agein. While
an incerrect key can produce 2 false 2larm, if the constant

field is learger than the number of bits in the restricted key

E/U/TC Chapter IV Page 27

SIANFOKU LIBRARIES

PUBLIC KEY DISTRIBUTION USING PUZZLES

space, then unicity distance arguments indicate that Tfalse
alarms should be rare.

With the concept of puzzle in hand, we can proceed. We let -
A and B agree upon the value cof ¥ which they wish to use. &
then generates N puzzles, and transmits these N puzzles to P
over the key channel, A chooses the size of the key space so
that these puzzles require O(N) effort to break, (That is, &
selects 2 key space of size K-N, for a2 constant, K.) Each puz-
zle contzins, within itself, two pieces of information. Nei-
ther piece of information is readily avzilzble to anyone exa—
mining the puzzle. By devoting C(N) effort to solving the puz-
zle, it is possible t¢ determine both these pieces of informa-
tion, Cne piece of informaticn is a2 puzzle id, which uniguely
identifies each ol the N puzzles. The ids were 2assigned by A
gt random., The other piece of information in the puzzle is a
random bit string which is the proper size for use @s a true
{unrestricted) key, i.e., one of the possible keys to be used
ir, subseguent encrypted communications. To distinguish the true
keys, one for each puzzle, from the keys randomly selected from
the restricted key space to create the puzzles, we will call
the former "“true keys", and the 1lstter, "restricted keys".
Thus, N true keys are enpuzzled, and in the process of enpuz-
zling each true key, & restricted key is used,.

When E 1is presented with this menu of N puzzles, he
selects a puzzle 2t random 2nd spends O(n) effort fo solve the

puzzle. P then transmits the id back to A over the key chan-

E6/L/79 Chapter IV Page 28

MNECHD LIBRARIES

PUBLIC KEY DISTRIBUTION USING PUZZLES

nel, and uses the true key found in the puzzle as the key for

further encrypted communications over the normal channel.

A, P, and E all know the N puzzles. They also knou the-

id, because B trensmitted the id over the key channel., B knows
the corresponding true key, heczuse B selected the puzzie to be
solved. A knows the corresponding true key, because A knows
which true key is associated with the id that P sent. E knows
only the id, but does not ¥know the true key. E does not know
witich puzzle contains the true key that P selected, and which A
end P zre using, even though he knows the id. To determine
which puzzle is the correct one, he must bresk puzzles at ran-
dom until he encounters the one with the correct id.

If E is to determine the key which A and B are using,
then, on an average, E will have to sclve 1/2 N puzzles before
reaching the puzzle that B soclved. Each puzzle has been con-
structed so that it recuires Q(N) effort to break, so E must
spend, on an average, O(Nz) effort Lo determine the key. B, on
the other hand, need conly spend CO(N) effort to break the one
puzzle he selected, while % need only spend O(N) effort to
menufacture the ¥ puzzles. Thus, both A and E will only put
in C(N) effort. A detaziled description appears in [21].

In summary: the method zilows the use of channels satisfy-
ing assumption 1, and not sstisfying eassumption 2, for the
transmission of key informeticn. We need only guarantee thet
ressages are uwnmedified, o2nd we no longer requlre that they be

vrread, I the twe communicants, A and B, put in C(N) effort,

E/L/79 Chzpter IV Page 29

:L}{JESEUQJ

L8
(R LIV

o 1
m-

PUBLIC KEY DISTRIBUTION USTNC PUZZLES

then the enemy, E, must put in 0(N2) effort to determine the
key.

Generzting the n puzzles is orders of magnitude less cost-
ly than transmitting them. Creating a method in which the ra-
tio of efforts was still n2:n. but which did not reguire
transmitting C(p) bits would be 2 substantial and practical im-

provement. There seems no reason in prineipal why such an im-

provement should not be possible.

£/4/7¢ Chapter IV Page 30

PUBLIC KEY DISTRYEUTTON USTNG PUZZLES

5. FOQTNCTE

Wyner [39] introduced a different (information theoretic)
approach to secure communicztion over an insecure channel
without prearrangement. Wyner assumes thet the wiretepper E
has inferior reception of the messages being transmitted. Ry
taking adventage of this inferior reception, Wyner shows how
the wiretapper cen be completely confused. Our approach is dif-
ferent and assumes thet both the legitimate receiver and the

wiretapper perfectly receive whatever the transmitter sends.

£/u/77¢ Chapter IV Page 21

DIANFCKD LIBRARIES

ket RRi

V. A CERTIFIED DIGITAL SIGNATURE

1. Introduction

"Digital signatures promise to revolutionize business by
phone or other telecommunication devices [6] but use of the
eurrently-known public key cryptosystems 181, [201, ;21]. (311
is riéky until they have been careru;ly certified. A signature
system whose security rested solely on the security of a con-
ventional ecryptegraphie function would be -"pre-certified" to
the extent that the undérlying encryption function had been
certified., The delays and cost of 2 new certification effort
would be avoided.. Lamport and Diffie [6] suggesth such a sys-

tem, but it has severe performance drawbacks. Lipton and Ma-

tyas [17) nonetheless suggested its use as the only near term

solution to 2 pressing problem.

rl
<

. w
This chapter describes a digital signature system which is

"pre—certified™ in the above sense, generztes signatures of
about 15 kilobits (2 kilobytes), requires a few thousand applij!
cations of the underlying encryption function per signatur!;
and only a few Kilobytes of memory. If the unherlyiﬂglencryp-
tion function takes 101microseconds to enerypt & block, gen-

erating a signature tqkeé approximately 20 milliseconds.

6/4/79 Chapter V Page 32

Y Uumalelallisriak. Lol in ¢4

The

1.)

2.)"

3.)

6/4/7Q

A CERTIFIED DIGITAL SIGNATURE

foilowing‘major polnts are covered:

A-deséription of the Lamport-Diffle one time signa-.

ture,
‘An improved version of the Lamport-Diffie one time

signature.

A method of COﬁverting any one time signature into e

convenient slgnature system.

!

Chapter ¥V Page 33

,

“yanFORMN T IRRARIERQ

& CERTIFIED DIGITAL SIGNATURE

2. The Lamport-Diffie One Time Signature

The Lamport-Diffie one time signature [€) is based on the

cénceﬁf of a one way function [7] ,[38]. If y = F(x) 1s the

result of applying the one way functlon F to input x, then the
key observation is:

The person who computed y = F(x) is the only person who

knows x. If y is publicly reveaied. only the origi-

nator of y knows x.—and can choose to reveel or con-

-

ceal x at his whim. {

This is best clarified by an example. Suppose aHp%rson A

has some stock, which he can s€11 at any time. A might wish to

sell the stock on short notice, which means that A would 1like
to tell his broker over the phone. The broker, B, does noE
wish to sell with only a phone c2ll as avthorization. To solfg
this problem, A computes y = F(x) and gives y to B. -They agree
that when A wants to gell his stock he will reveal‘x to B.
(This agreement coulqhbé formalized as a written contract [17]
which includes the value of y and a deseription of F but not
the vaiue of x.) B will then be able to prove that A wanted to
sell his stock, becsuse B will be able to exhibit x, and demon-

strate that F(x) = y.

If A later denies having ordered B to sell the stock, R

6/5/79 Chapter V Page 34

coanmrRN I IRDADIECQ

A CERTIFIED DIGITAL SIGNATURE

can show the contract and x to a judge as proof that A, con- -

trary to his statement, did order the stock sold. Both F and y

are given in the original (written) contract, so the judge can -

compute F(x) and verify that it equals y. The only person who
kmew x was A, and the only way E could have learned x would be
if A had revealed x. Therefore, A must have revealed x; an ac-
tion which by prior agreement meant that A wanted to sell his
stock.

This example illustrates a signature system which "signs®
a single bit of informatién. Either 3 sold therstock. or he
did not. If A wanted to tell his broker to sell 10 shares of
stock, then A must be able to sign a several biE message. In
the general Lampoft—Diffie scheme, if A wanted to sign a mes-
sage m whose size was s bits, then he would precompute.F(x1) =
B2 F(xz) = Yoo F(x3) = ys....;f(xs) = Ygo A and B;woulddagree
on the vector Y = Yoo Yo - Ygr If the jth bit of m was & 1,
A would reveal xj. If the jth bit of m was a 0, & would not
reveal xj. In essence, each bit of m would be individually/
‘signed. Arbitrary messages can be signed, one bit ayﬂa time.

In practice, long messages {greater than 100 bits) can be
mapped into short messaégs (100 bits) by a one way function and
only the short mes;égé signed. We c¢an thérefore assume,
without loss of generslity, that all messeges are a fixed
length, e.g., 100 bits.

The method as described thus far suffers from the defect

that B can 2lter m by changing bits that are 1's into O's. P

674/79 Chapter V Page 35

cyameRN FIRVARIRG

A CERTIFIED DIGITAL SIGNATURE

simply denies he ever received xj, (in spite of the fact he

did). However, 0's cannot be changed to 1's. Lamport and Dif-

fie overcame-this problem by signing » new message m', which is -

exaétly twice as long as m and is computed by concatenating m
with the bitwise complement of m. That is, each bit mj in the
originzl message is represented by two bits, mj and the comple-
ment of mj in the new message m', Clea;ly, one or the other
T bit mugt be a 0. To alter the message, B would have to turn a
0 into a 1, something be cannot do.

It should now be cléar why this method is é "one time"
signature: Each Y = Yir Yoo .;. Y, g can only be used to sign
one message. If more then one message is to SL signed, then
new valves ¥,, Yo, Y3. ... are needed, a new Yi for each mes-
sage.

One time signatures are pfactical between a single p;ir of
users who are willing to exchange the large amount of data

necessary but they are not practical for most applications

/
without further refinements. If each Y5 is 100 bits long and a°

100 bit one way hash function of each message_1is signed, each
Yi must be 20,000 hits. _If 1000 messages are to be signed be~

fore new public authenti$ation data is needed, over 20,000,000
3

bits or 2.5 megabytéé must be stored =zs pubiic information.

Even if this is not overly burdensome when only two users, A

and B, are involved in the signature system, i1f B had to keep

2.5 megabytes of data for 1000 other users, B would have to

store 2.5 gigabytes of data. While possible, this hardly seems

6/&/79_ Chapter V Page 36

o,
i
&
<
&
e
od
&
o
w
4
K

A CERTIFIED DIGITAL SIGNATURE

economical., With further increases in_fhe number of users, or .
in the number of messages each usér'wants to be able teo sign,
the system becomes completely unwieldy.

How to eliminate the huge storage'requirements is a major

subject of this chapter.

i
1

6/4/79 Chapter-v Page 37

)]

,

STTARNILTFINIY (IR

A CERTIFIED DIGITAL SIGNATURE

3. An Improved One Time Signature

This section explains. how to reduce the size of signed:
messages in the Lamport-Diffie method by almost & factor of 2.

As previously mentioned, the Lamport-Diffie method solves
the problem that 1's in the original message can be altered to
0's by doubling the length of the meséage, and signing each bit
_and its complement independently. In this way, changing a 1 to
a2 0 in the new message, m', would result in an incérrectly for-
matted message, which #@uld be rejected. In essence, this

represents a solution to the problem: 1

Create a coding scheme in which aceidental or inten-
tional conversion of 1's te O's will proquce-aﬁ ille-

gal codeword.

An alternative coding method which accomplishes the same
result is to zppend a count of the number of 0 bits in m before
signing. The new message, m', would be only 11':32 8 Bits longer
than the original s 'H%t message, m. If any 1's in m' were
changed to 0's (0's dam:iot be changed to 1's), it would falsify
the count of 0's.

Notice that while it is possible to reduce the éount by
changing 1's to 0's in the count field, and while it is possi-
ble to increase the number of O0's by changing 1's to 0's In the

r

6/4/79 Chapter V Page 38

i
4
<
[d
x
[y
¢
s
c
&
¥

n wERTIFIED DIGITAL SIGNATURE

message, these two "errors" cannot be made to compensate for

each‘other.

A small example is in order; Assume that our messages are .
B bits long, and that our count is logz-B = 3 bits long. If
our message m is

m = 11010110
Then m' would be

m' = 11010110,011
(Where a comma is used to clarify the division of m' into m and
its 0 count.) |

If the codeword 11010110,011 w?re changed to 01010110,011
by changing the first 1 to a 0, then the counﬁ 011 would have
to be changed %o 100 because we now have U 0's, not 3. PBut
this requires changing a 0 to a 1, something we cannot do. If
the codeword were changed té 11010110,010 by a}ter;né the 0
count then the message would have to be changed so that it had
only 2 0's instead of 3., Again, this change is illegal because

it requires changing 0's to 1's. g

This improved method is easy to implement and cuts the
size of the signed message almost in bhalf, although this is
still too large fer mpst applications: e.g., it reduces 2.5

]

gigabytes to 1.25 g{Eabytes.

6/H/?9h Chapter V Page 39

yonrORND HIRDARIEG

T E
e ™

~ ERTIFIED DIGITAL SIGNATURE

Yy, Tree Authenticetion

A new protocol would eliminate the large storage require-

ments and the need for prior arrangements., If A transmitted Yi

to B jusf before =igning a message, then B would not previously
have had to get and keep copies of the Yi-from A Uﬁfortunate-
ly, such a protocol would net work because anyone could claim
to Sé A, send a false Yi, and trieck B into thinkiég he had re-
ceived a properly authorized signature when he- had received
nothing of the kind, B must somehow be able to confirm that he-

was sent the correct Yi and not a forgery. 1

The problem is to authenticate A's Y The simplest {(but

i.
vnsatisfactory) method is, as suggested zbove, to keep a copy

of A's Yi.' In this section, we describe a method called "tree

authentication" which can be used to authenticate any Y, of any

i

user quickly and easily, but which requires minimazl storage.

Problem Definition: Given a vector of data itém; Y=1x,

.o Yn desigh an aléorithm which can quickly authenticate a

{

randomly chosen Yi-but which has modest memory reguirements,

Y2.

b4 Y

i.e., does not have a table of Y or res Yoo

1I

6/4/79 Chapter V Page U0

72
L
&
et
¥
c
c
c
v
z
[

%

. ~ERTIFIED DIGITAL SIGNATURE

We auvthenticate the Y, by "dlvide and conquert®. As illus-"

i
trated in figure 1, define the function H(i.J;_!) by

1.) H(1,1,Y)

F(Y))

2.) H(1,3,Y) = F(H(1,k,Y), H(k+1,3,Y))

where k = (1+])/2
for the <i,j> pairs of figure 1 and 1ts extensions to larger

trees described below.

H(4,J,Y) is a function of Y and can be used

N i' Yi+1' L] YJ
to authenticate all of them. " H(1,n,Y) can be used to authenti-.

cate Y1 through Yn and is only 100 bits, so 'iit. can be con-

venlently stored. We restrict n to powers of 2 to simplify the

explanation.

This method lets us selectively authenticate any Mleaf,”

[

that we wish. To see this, we use an example where n = 8.

Y,
To authenticate YS' we proceed 1in the manner 1llustrated in
figure 2: ' /

-t

;’

»

1.) H(1,8,Y) is already known and authenticated.
2.) H(1,8,Y) = 1:3(H(1,4,Y), H(5,8,Y)). Send H(1,4,Y)
‘ and H(S.B.Z) and let the receiver co'mpute H(1,8,Y) =
F(H(1,4,Y), H(5,8Y).)} to confirm that they ‘are
correct.

3.) ‘The receiver has authenticated H(5,8,Y). Send

H(5,6,Y) and B(7,8,Y) and let the receiver compute

6/4/79 Chapter V Page W1

“AANENRN T IRRARIER

l . SHEVEHI | UHUANY L~
qTh 39v4 | _
"8 = N HLIM 3341 NOILYOLINIHINY NY
. 194 |
L S SR/ S U '\
BNe] O e QO 0O O O &

(REBHQRLLIHD (RFNHQA'S'HOK Y DI QR ECHOAZZDHQ AL IHO

(R'ewHt - (X' RoeRY (FeH Y

!

.”_Q.m.mfo XY
(X8RO

PR AL e L
T iR L
ﬁ%m@“&f a

- -

SOV Uin UV

JTh 39v4 - R ,
'SA 404 HIYd NOTLYOTLNIHLAY FHL MOHS_STIULNI TIIMID
Cozed ™ |

_ Q_m_m.v_: Q ﬁwi: O %'S'G)H DR PIHQIA S EHO(R ZZDHQE LUIIHO :

bl | i
(A'8"1IHO
¢ hdum.ﬁammmd%nrw\.ﬂf al 1 ﬁ.W

A CERTIFIED DIGITAL SIGNATURE

H(5,8,Y) = F(H(5,6,Y), H(7,8,Y)) to confirm that
they are correct,

4. Thé receiver - has éuthenticated H(5,6,Y). Send.
H(5.5.1)' and H(6,6,Y) and let the receiver compute
H(5,6,Y) = F(H(5,5,Y), H(6,6,Y)) to confirin that
they are correct.)

5.) The receiver has authenticated H(5,5,Y). Send Y. and

5
let the receiver compute H(5,5,Y) = F(-¥_.) to con-

5
firm that it 1is correct.
6.) The receiver hés aqthentieated Y5.
1
Using this method, only 1032 n transmissions are required,
_ each of about 200 bits. Close examination of the algorithm
will reveal that half the transmissions are redundant. For ex-
ample, H(5,6,Y) can be compu£ed from H(5,5,Y) anz H(6,6,Y), so
there is really no need to send H(5,€,Y). Similarly, H(5,8,Y)
can be computed from H(5,6,Y} and .H(7,8,Y), so H(5,8,Y) need
never be transmitted, elther, (Th. receiver must compute thése
quantities anyway for proper authentication.)\Therefﬁre, to au-

thenticate T required'only that we have previously authentl-

5

§
cated H(1,8,Y), and. that we transmit Y., B(6,6,Y), H(7,8,Y),

5'
and H(1,4,Y). That is, we require 100 log, n bits of informa-
tion to authenticate an arbitrary Yi.

The method is called tree authentication because the com-

putation of H(1,n,Y) forms a binery tree of recursive calls.

6/4/79 Chapter V Page 42

/

Tnm DN INDADICR

A CERTIFIED DIGITAL SIGNATURE

Authenﬁicating a particﬁlar leal’ Y, in the tree requlres only .

i
those values of H() starting from the leaf and progressing to
the root, i.é;. from_H(i.i.I) te H(1,n,Y). H(1,n,Y) will be.
referred to as the ;oot of" the authentica£ion tree, or R, The
information near the path from F to H(1,i,Y) required to au-

thenticate Y, will be called the authentication path for Y

1 i*

A "proof" that the authentication path actually authenti-
cates the chosen leaf 1s similar to the "proof" that F defined
in chapter II correctly authenticates its input. ~Agaln, more
rigorous proofs must awaif advances in complexity fheory. .

Although H({} produces =a 500 bit output, unless additional

60 or 270

precau?isns (outlined in chapter II) are taken, bnly 2
operations would suffice to break the system. To force the
“oryptanalysis to use 2100 cperations it is necessary to make
each application of F unique, i.e., to use a family of Bne way

functions Fi. F each one of which is used only once.

o1 een

The use of tree authenticatlon is now fairly clear. A
transmits Yi to B. _A then transmits the authentiéation p?tﬁ
for Yi. B knows R, the root of the authenPicati?n tree, by
prior arrangement. B.cgn then authenticate Yi' and ecan accept
the ith signed message'from A as genuine.

1

The prior arran&éments include the computétion of R by A.
If A wishes to be able to sign 1,000,000 messages, this pre-
computation will require about an hour, assuming a single en-

cryption takes 10 microseconds, (Fairchild is now (1979) pro-

ducing 2 4~chip set which costs about $7350 and which encrypts

6/4/79 Chapter V Page 42

SR

SYANFORD LIBRARIES

A CERTIFIED DIGITAL SIGNATURE

faster than this.) The time required for the pre—computatioﬁ is
linear in n, so if A desires to be able to sign 1,000,000,000
messages, his pre-computation will be about 1000 hours.

The major distinetion Eetween this method and digitel sig-
natures generated 'using public key cryptosystems 1s the re-
quirement that R be changed periodically because only n mes-
sages can be signed. With a public key cryptosystem, 1t 1is
possible to sign an almost indefinite number of méssages. and
for a user to retain DA for his lifetime if he so desires. In
practice, this restriction does not appear to be significant,

If the jth user has a distinct authentication tree with
root RJ. then tree authentication c¢an be used Jo authenticate
Rj Jjust as easily as it c¢an be used to authenticate Yi. It is
not necessary for each user to remember all the Hj In orger to

authenticate them. A central clearinghouse could éEcept the Rj

from all u ﬁsers._and compute H(1,u,R). Thils single 100 bit-

quantity ecculd then be distributed and would serve to suthenti-
Fa

cate all the R,, which would in turn be used to authenticafe

j'

the Yi. In practice, A would remember RA and- the authentice-

tion path for RA and sepd'them to P along with ¥, and the au-

i
thenticatlion path for Y,i. (A different method of authentica-
tion would be for the clearinghouse teo digitally sign "letters
of refefence“ for new users of the system using a one time sig-
nature. Kohnfelder [14] has suggested this method for use with
public key eryptosystems; see chapter 9.)

Tree authentication and euthentication using cne time sig-

6/4/79 Chapter V Page 44

< IVaNFNRN TIRRARIER

A CERTIFIED DIGITAL SIGNATURE

P e S D s A (Y

natures can be intermixed to produce systems with all the flex- .

ibility of public key based systems.

"\

5

~1ANFORD | IRRARIES

6/4/79 . Chapter V Page U5

A T

A CERTIFIED DIGITAL SIGNATURE

-‘- 5. Thé Path Regeneratiofl Algorithm

A must know the authentication path for Yi b‘efore-
transmitting it to B. Unfortunately this requires the computa-
tion of H(i.j,z) for many different values of 1 and j. In the
examﬁle, it was necessary to compute H(6,6,Y), H(7,8,¥), and
H(1,4,Y) and send them to B slong with YS' This 1is simple for
the =mall tree used in our example, but computing
H{#194304,8388608,Y) Jjust prior to sending it would b.e an in-

tolerable burden. One obvious solution would be to precompute

A more satisfactory solution is to note th‘;t we wish. to

) : &
H(1,n,Y) and to save all the intermediate computations: i.e., Lt
} { (o]

precompute all suthentication paths. This would certalnly al=- E.
Cr
low the quick regeneration of the authenticetion path for Yi, / -
c

but would require a large memory. ‘o g
L

£

E

authenticate Y.', YE' Y3. Yll' «++ 1n thet order. Most_of‘ the
computations used in reconstructing the authentication path fo:-
Y:L can be used in computing the :zuthentication path for Yiﬁ;.
Only the incremental computations need be performed, and these
are quite modest. e .

In addition, a_lthéough the Yi must appear to be random,
they _can actually be generated (safely) in a pseudo-random
fashion from a small truly random seed. It is not necessary to

keep the Yi in memory, but only the small truly random seed

used to generate them.

6/4/79 Chapter V Page U6

- A CERTIFIED DIGITAL SIGNATURE

The result of these observations is an algorithm whieh can -

recompute each Yi and its.authenticaﬁion patﬁ quickly and with

modest memory requirements, Before descrilbing it we review the.

problem:

Problem Definition: Sequentially generate the authentica-
tion paths for Y1. YZ' Y3. R Yn with modest time-and

space bounds.

The simplest way to understand how an algorithm can effi-
ciently generate all suthentication paths is %o generate 211
the authentication paths for a small example,

An example of all authentication paths for n = 8 %s:

v

L4

leaf authentication path

Y, H(1,8,Y) H(5,8,Y) H(3,4,Y) H(2,2,Y) 4

Y, H(1,8,Y) B(5,8,Y) H(3,4,¥) H(1,1,Y) !

Y H(1,8,Y) H(5,8,Y) H(1,2,Y) H(4,14,Y)

Y, H('l-..B.}_') H(5,8,Y) H(1,2,Y) H(3,3,Y)

Y -H(i.a.p H(1,4,Y) H(7,8,Y) H(6,6,Y)

Y, H(1,8,Y) H(1,4,Y) H(?.a.i) H(5,5,Y)

1, H(1,8,Y) H(1,4,Y) B(5,6,1) B(8,8,Y)

Y, H(1,8,Y) H(1,4,Y) H(5,6,Y) H(7,7,¥)

TABLE 1 .

6/4/79 | Chapter V Page 47

AR T,

STANFORD LIBRARIES

& CERTIFIED DIGITAL SIGNATURE

If we haed to separately coﬁpute each éntry in table 1, then it

would be imposslible td efficiently generate the authentication

paths. Fortunately, there is a great deal of dupliestion. 1If

we eliminate all duplicate entries, then table 1 becomes table

leaf suthentication path
Y, H(1,8,Y) H(5,8,Y) H(3,4,Y) H(2,2,Y)
1, H(T,1.0)
¥, H(1,2,Y) R(4,4,%)
Y, H(3,3,Y)
Y, H(1,4,Y) H(7,8,Y) H(6,6,Y)
Ye H(5,5,Y)
Y, H(5,6,Y) H(8,8,Y)
Y H("r','!-.l)
4
TABLE I 4

- .

Clearly we can ﬁenerate all authentication paths by
separately computing_;ach of the 2 n-1 entries in table 2, but
this would require too much memory, and it 1s not clear what
the execution time would be. We first consider the execution
time, the memory requirement will be considered later. Because

all computations must eventually be defined in terms of the

6/8/79 Chépﬁer V Page 48

EEETELE LTS

TSN

STANFORD LIBRARIES

A CERTIFIED DIGITAL SIGNATURE

underl-ying encryption funetion C(key,plaintext), it seems ap- -
propriate to define execution time requirements in terms of the
number of a-pp-lications of C. One applieatlion of C counts as.
one "unit" of computatlon, - We shall call *;',his "unit" the Vet ,©
(pronounced eetee) which stands for "encryption time.”

Computing F requires a number of ets proportional to the
length of its input. 1In particular, if the input is composed
of 100 k bits, then F requires k-1 ets (see chapter.2).

Flrst, we must determine the cost of computing the Indivi-
dual entries. The algorifhm for computing H(i.:j.}_'_-) from Y does

Y

a tree traversal of the subtree whose leaves are Yi' 147°

Y Y At each non-leaf node in this trhversal it does

i+2| e w jn
1 et of computation (one application ef F to a 200=-blit argu-
‘ment), A tree with j-i+1 leaves has j-1 non-leaf nodes, i.e., '_ /
J-1 nodes internal to the tree, - For example, a. tree ;with 8

leaves has 4 + 3 4+ 2 + 1 = 10 internal nodes. Because there

SIANFORD LIBRARIES

ere j-i1 non-leaf nodes, computing H(i,J,Y) requires Jj-i ets,
excluding the leaves. The computations required to 'regenera)pé
a leaf (uvsing a truly random seed in a pseudo random number
generator) will be fixed and finite. Let r be the (fixed)
number of ets required '1;,0 regenerate a leaf. There are (j-i+1)
{

leaves, so the over‘;n cost of computing H(i;j.z) is (j=1) +
{j=i+1) * r ets. In practice r will be a few hundred, so we
can approximate this by (j-i+1) -+ r ets,

We can now approximate the cost of computing each entry in

table 2. There are n entries which require about r ets, n/2

6/4/79 Chapter V Page 49

sk

Bl

~

. A CERTIFIED DIGITAL SIGNATURE

entriés whieh require ébout'z r ets, n/d entries wﬁieh require-
about 4 r ets, and n/B entries which requife about B8 r ets.
This means‘tﬁat the total cost-of computing all entries in a
single column 1s about 8 r-ets, There are 4 columns, so the to-
tal computational effort is about 4:8 r = 32 r ets. In gen-
eral, the computational effort required to compute table 2 will
ben +« {1+ log,, n) - r ets. This is because computing all the
entries in each column wlll require n * r ets, and there are 1
+ log2 n columns.

This result 1mp11es-that an algorithm whicﬁ sequentially
generated the authentication-paths-would require an average of
about ‘ - -

r - log2 n (5.1}

" ets per path, where r is 2 constant representing the number of

ets reguired to regenerate a ieaf. This is quiteureasogable.
Although the time required to generate each authentication
path is small, we must alsp insure that the space required 1is
small and that the computational burden 1s smoothly distribu}eé
as a function of time. We can do this by again looking at
table 2. As we sequentially generate the authenticatlon paths,
we will sequentially é% through the entries in a column. This
1
implies that at any‘Bbint In time there are oniy two entries in
a column of any interest to us: the entry needed in the current
avthentication path, and the entry Iimmediately following it.

We must know the entry in the current authentication path, for

without it, we could not generate that path. At some point, we

6/”/79- Chapter V Page 50

SIANFORD 1 IRRARIRS

A CERTIFIED DIGITAL SIGNATURE

will need the next_entr& in the column to generate the next au- -

thentication path. Because it might require a great deal of
effort to coﬁpute the next entry (e.g. to compute H(1,4,Y)), we.
need to compute it incrementally, and to begin computing it

well in advance of the time we willl actually require it to gen—

erate an authentication path.
As an example, H(5,8,Y) is required in the authentication

paths for Y1. Yz. Y., and Y, while H(1,4,Y) is required in the

3 4

paths for Y, YG' Y?' and Y The values of H{) for the first

5* 8
avthentication path must be precomputed with some delay (dis-

cussed below). - Once this precomputation 1s complete, the
succeeding values of H() required in sueceediné authentication
paths must be incrementally computed. As we generate the first

4 authentication paths, we must be continuously computing

H(1,4,Y) even though it is not needed until we reach Y If we

5.
walted until time 5 to start computing it, it would take about
4 r ets to compute and entall some delay. By computing it dur-

ing times 1 through 4, a processor capable of only r ets/u?Ié

time is needed. In generel, 1f the tree is of depth k it will

take 2571 - r ets to compute the second element in the second

L)

column, but there are ?k-1 time units in which to compute it,

agaln requiring a prgbeésor capable of only r efs/unit time.
Similarly, we must start computing the second element in

the third column, H(1,2,Y), when we generate the first authen-

tication path., It takes about 2 r ets to compute this element

k-2

(2 in general), but there are 2 time units (Zk_2 in gen-

6/u/79 Chapter V Page 51

STANFORD LIBRARIES

SLat AT

.. ~-ERTIFIED DIGITAL SIGNATURE

* ersl), in which to do this, -so the processor f;:r computing en-,
tries in the ﬁhird column also needs to operate at only r
ets/unit time. ‘It is seen that it takes Z 1 . ¢ ets to com
pute the next entry in the .ith column and .that' there are Zk-i-‘I

time units in which to do this, Thqs, only one processor is
needed per column (1032 'n in 2ll), and each processor need
operate at only r ets/unit time.

If we sssume a convenient block size (of 100 blts) and if
we lgnore c.onstant factors'. then the merhory required by this
method can I_:e cohputed, We can first determine the memory re-
gulred by the computations in each column, and then sum over
all 1032 n columns. We must have one bloci_-: to store the
current entry in the column. We must also have enough memory

- to compute the next entry in the column. The memory required /

while computing H(i,j,¥) is ':Iﬁ + 1032 (j=1+1) blor‘:_ks. This as-

sumes a straightferward recursive algorithm whose maximum stack

STANFORD LIBRARIES

depth will be 1 + log2 (j-i+1}. The memory required to recom-

pute a leaf (to recompute H(i,i,Y}) 1s ignored because it is

¥

small (a few blocks), constant, and the same memory can be

-

shared by all the columns. Representing the memory require-

ments of H() in 2 new f_able in the same format as table 2 gives
|

table 3:

6/4/79 Chapter V Page 52

W
AL

BLF 3

BT S

& CERTIFIED DIGITAL SIGNATURE

leaf memory required to compute entries

in suthentication path {in blocks)

Y, oy | 3 2 1
A 1
Yy 2 1
Y, 1
Y 3 2 1
Ye 1
Y, 2 1
Yy 1
TABLE 3 i

Table 3 shows the memoryirequired to compute each entry in
w

table 2. Clearly the memory ;;quired to compute H(i,i,Y) is 1,

™~
S1ANFORD LIBRARIES

The memory required to compute H(1,2.I) = 1 + the memory re-
quired to compute H(1,1,Y) since we first compute H(1,1,Y) and,
must remember it to compute H(1,2,Y). Similarly, to compﬁ%e
H(1,2t,z) réquires one more memory location than was"ngeded for

1.!). The memory required for each column will be about

H(1,2%"
the memory required durfng the computation of a.single entry in
the cqlumn because once an entry 1s computed, the memory is
avallable to compute the next enfry and the old entry is dis-
carded after use. This means the total memory required will be

about: 2 +2 + 1 = 6 blocks., {(This assumes we do not recompute

H(1,8,1)).

6/4/79 Chapter V Page 53

A CERTIFIED DIGITAL SIGNATURE

For n 1ln general, there are 1032 n columns and each column

requires, on an average, (log2 n}/2 blocks so the total memory

required will be on the .order of:

(1ogé n)2/2 blocks

This means that the memory required wﬁen n = 220
(1,048,576) 1s about 20:20/2 = 200 blocks. For 100-bit blocks,
this means 20 kilobits, or 2.5 kilobytes. Other overhead might
amount to 2 or 2 kilobytes, glving an algorithm wﬁich requires
5 or 6 kilobytes of memory, in total. |

Readers interested in implementing this teéhnique can use
the following pfogram. written in a Pascal-like language with

two multiprocessing primitives added:

LY

1.) While (condifion> wait W
2.) Fork <statement)
In addition, the function "MakeY(i)" will regenerate the value

7
of Yi from the truly random seed. If

Declare flag: array[D.ziogz(n)—1] of integer;:
i
AP: array[o.flogz(n)—1] of block:
(® AP — Authentication Path #)

Procedure Gen(i);

Begin
. 1+1
For j:= 1 to n step 2 Do
6/4/79 éhapter V Page 54

i

[~ RERE

PR ¥y] -.;‘1

S1ANFORD LIBRARIES

s . A CERTIFIED DIGITAL SIGNATURE

Begin
Enit(1,H(j2t, 423 1210);
Emit(1,H(3, J+2lo1));

End;

End;

Procedure Emit{i,velue);
Begin
While flagl[i) # 0 wait;
AP[1i]:= value; _
flagli]:= 2t r

End;

y

Procedure H(a,b): _ .- ¢
Begin
If 2 = b Return(F(MakeY(2)))
Else
Return(F(H(a,(a+b-1)/2) H((2+b+1)/2,b)); -
(* MNote that F shquld be parameterized by
the user's name ?nd by a and b, If

this is not done, Y must be made larger

' to assure security (see chapter II).)

End:

6/4/79 Chapter V Page 55

S1ANFORD LIBRARIES

A CERTIFIED DIGITAL SIGNATURE

J

(* The main program ¥*)
Begin -
For i := 0 to log,(n)-1 Do
Begin
flag[;]:: 03
.Fork Gen(i);
End;
For j:= 1 tc n Do
Begin

Print("Authentication Path ™, j, ™ is:");

For k := 0 to log,(n)-1 Do . g
Begin ' i g;
While flagik] = 0 wait; @
Print(AP[Kk]); ‘ gg

¢ o
flaglkl:= flaglkl-1; i *. '-g

End: —

Y2
End;

End; | ' ’f’

bl

The general strucgpré of thi; prograﬁ is siﬁple: the main
routine forks off log2 n processes to desl with the 1032 n
columns. Then it prints each aufhentication path by sequen-
tially printing an output from each process. The major omis-—

sion in this program is the rate at which each process does its

6/4/79 Chapter V Page 56

—

A CERTIFIED DIGITAL SIGNATURE

computations. It should be clear from the previous discussion

that each process has adequate time to compute its next output.

There are three major ways of'improging this =algorithm.

First, each procesﬁ is completely independeht of the other
p;ocesses. Ho;ever,'separate processes often require the same

intermediate values of H(), and cculd compute these values once

and share-the result.

Second, values of H() are discarded after use, snd must be

recomputed later when needed. While saving all values of H()

takes too much memory, saving some values can reduce the compu-

tation time and slse reduce memory requirements. The reduction
. i {

in memory is because of the savings in memory when the saved
value Is not recomputed. Recomputing a valuve requires memory

for the computation, while saving the value requires only a

-
-

single block. .- .

Finally, the memory requirements can be reduced by care-

fully scheduling the processes. While it is true that each

/
process requires about log2 n blocks of memory, this is a max—

/]
imm requirement, not a typlcal requirement.. By speeding up
the execution of a process when it is using a lot of memory,

and then slowing it down when it is using little memory, the
b

average memory requirement of a process (measured in block-

seconds) can be greatly reduced. By scheduling the processes

so that the peak memory requirements of one process coinecide

with the minimum memory requirements of other processes, the

6/4/79 Chapter V Page 57

SIANFORD LIBRARIES

;o "(

SiE

i
TEWY

st o

ot

1
TN

Seitte
SSNE

A CERTIFIED DIGITAL SIGNATURE

total memory required can be reduced.
All three approaches deserve more careful study because
the potentiél ‘savings In time and space might be large. Even -

without such improvements the technlque is completely practi-

" eal,

Before the time requirements of the élgorithm can be fully
analyzed, =2 description of MzkeY 1s needed: 1.e., we must
determine r in equation (5.1). If we assume that the improved
version of the Lamport-Diffie algorithm 1s used, then MakeY
must generate pseudo-random Xi vectors, from which Yi vectors
can then be generated. If the one way hashed messages are 2ll
100 bits long, then the X, vectors will have 100 + log, 100 =
107 elements.

The xi vectors can be generated using a conventipnal cl- f
pher, C(key,plaintext). & single 200 bit secret keygis re-

quired as the "seed" of the pseudo-random process which gen-

\
<1ANFORD LIBRARIES

erates the xi vectors. The output of C is always 100 bits, and

the input must be 100 bits or fewer, (if fewer, 0's are appen%r/

ed). We can now define X3 j as .

X4 5= C(éeé&key,(i,j))
i

{
where "seedkey" is the 200 bit secret and truly random key used

as the "seed" of this somewhat unconventional pseudo-random
number generator., The subseript 1 is in the range 1 to n,
while the subseript J is in the range 1 to 107. There are n

posslible messages, each 100 bits in length. Each xi is a vec-

6/4/79 Chapter V¥ Page 58

e "Jh':‘ggl,:-'
: EoA

n VERTIFIED DIGITAL SIGNATURE

© tor x ves X

1,1* *1,2° 1,107° - S -

B Determining any Xy j knowing some of the other x j',s is

i,
equivalent t';o‘the problém of cr:,rpt'énalyzing C under a known-
plaintext attack. If C is & good encryption function, it will

not be possible to determine any of the x without already

i,]
knowing the key. The secret vectors xi are therefore safe.

We know that ¥i,5 ° F(xi,j)' and that H(i,1,Y) = F(Yi) =
F(yiﬂ' yi.2' Yi,3' aea 31'107). The cost of computing F(Yi)
is 106 ets, because Yi is 107100 bits long., The total effort

to compute H(i,i,Y) is the effort to generate the elements of

-
-

ets to regenerate each leaf in the authentication tree.

Using equation (5.1), we know that the cost per authenti-

the Xi' vector, plus the effort to compute F(xi,1)' F(xi.z}. ree @
F(x;), plus the effort to compute F(Y,). Thisl is 107 ets to g
compute the Xi vector, 107 ets to compute the Yi vector, and g
106 ets to compute F:(Yi) = H(i,1,Y). This is a totai} of 320 / QQ:
:
7

cation path is 320 1032 n ets, For n = 220. this is 6400 ets.

To generate authentication paths at the rate of one per secon}i-"(
implies 1 et is about 160 microseconds. While easi;y done 1n

hardware, this speed is.difficult to ettain in software on
current computers, Redll;:ing the number of ets per authentlea~

: ,

tion path is =2 worth;};_ﬂe goal, This can effeétively be done

by rédu’cing either the cost of computing H(i,1,Y), or by reduc-

ing the number of times that H(i,i,Y) has to be computed.

As mentioned earlier, keeping previously computed values

of H() rather than discarding them and sharing commonly used

6/4/79 Chapter V Page 59

= hs

g |

A CERTIFIED DIGITAL SIGNATURE

yalues ﬁf H() among the.log2 n processes reduces the cost of
computing each authentlcation path. In fact, ; reduction from
over 6000 ets £6 sbout 1300 ets (for n = 229) can be attained. -
(To put this in perspective, MakeY requires 320 ets and must be
executed at least oﬁce per authentication path. Therefore, 320
ets 1s the absclute mininmum that can be attained without modi-
fying MakeY.) This means the path regeneration algorithm can.
run in reasonable time (a few seconds) even when the underlying

encryption function, C, 1s implemented in software.

LY

Bl . X

6/4/79 Chapter V Pagé 60

STANFORD LIBRARIES

A CERTIFIED DIGITAL SIGNATURE

6. Conclusion

Digital signature systems not requiring public key cfyp—

tosystems are possible and desirable becsuse they are easy to

certify. Such a system was described which had modest space
and time requirements and- a signature size of about 15 kilo—
bits. The method described can be implemented at once, with no

delay due to certification.’

il

6/4/79 Chapter V Page 61

SIANFORD LIBRARIES

VI. THE TRAPDODOR KNAPSACK

1. Introduction

This chapter describes a public key cryptosystem based en
the knapsack problem. Given a one-dimensional knapsack of
length S aﬁd -n rods of lengths a4,85,...,3,, the "iknapsack
problem" is to find a subset of the rods which exactly fills
the knapsack, if such a subset exists. Equivalently, find
binary n-vectér X such that S = 2 * x, if such an x exists, (¥
applied to vectors denotes dot product.)

A supposed solution X is easily checked in at most n addi-
tions, but finding & solution is believed to require 2 number
of operations which grows exponentiallf in n. Exhaustive, tri-
al and error search over all 20 possible x's is computationally
infeasible if n is larger than one or two hundred. The best
published method for solving knapsacks of the form considered
here requires an/2 complexity both in time and memory [10]. In
addition, Schroeppel [33] has devised an algorithm which takes
0(2"/2y ¢ime and 0(20/H) space. Theory supports the belief
that the knapsack problem is hard because it is an NP-complete
problem [footnote pége 81], and is therefore one of the most
difficvlt computational problems of a cryptographic nature [1
pp 363-404] [6], Its degree of difficulty, however, is ecru-
cially dependent on the choice of a. If a = (1,2,4,...2077),

then solving for x 1is equivslent to finding the binary

6/4/79 Chapter VI Page 62

L aNEORN EIRRARIES

.h-_h

THE TRAPDOOR KNAPSACK

representation of S. BSomewhat less trivially, if for all i,

i-1

a.i.>za.Jj (6.1)

j=1

then x is also easily found: x =1 if and only if 5 > a, and,

for i = n—[.n—2,...1, Xy = 1 if and only if
n
S - X, ~a, » 6.2
E j T 2oy (6.2)
J=1i+1

While the theory of NP-complete problems and these exam—
ples demonstrate Eﬁat the knapsack problem is-only diffieult
from a worst case point of view, it is probably true that
choosing the 3, independently and uniformly from the integers
between 1 and 2" generates a difficult problem with probability
tending to one as n tends te infinity. While several efficient
algorithms exist for solving the knapsack problem under special
conditions 110], [11], [1€], none of these special conditions
is applicable fo trap doer knapsacks generated as suggested in
this chapter,

A trap door knapsack [6] is one in which careful choice of
a allows the designer to easiiy solve for any x, but which
prevents anyone else from finding the solution. We will
describe one method for econstructing & trap door knapsack, and
another (multiplicative) ﬁethod due to Hellman is desecribed in
{21]. We first indicate how knapsacks can be used to hide in-

formation. Each user I in 2 system generates a trap door knap-

6/4/79 Chapter VI Page 63

AR f.’?f?ﬂ}?,r‘;

A

THE TRAPDCOR KNAPSACK

sack vector, a(I), and places it in a public file with his name

and address, When someone wishes to send the binary informa-

tion vector x to the Ith user, he sends S = x * a(I). The in--
tended reciplient can recover x from £ but no one else can.
Section 5 shows how trap door knapsacks cah be used to generate

electronic signatures and receipts [6].

Before proceeding, a word of caution is in order. First,
as is always the case in computational cryptography, we éannot
yet prove that the systems described in this‘ chapter are
securé. For brevity, however, we will not continue tc repeat
this. Second, t;e- trap deoor knapsacks described in this
chapter form a proper subset of all possible knapsacks and
their scolutions are therefore not necessarily as difficult as
for the hardest knapsacks, and it is the hardest knapsacks with

whiceh NP theory is concerned.

6/4/7% Chapter VI Page 6l

W | IRRARIES

f
7

.II ” ﬂ-’.;_.

THE TRAPDOOR KNAP3ACK

2. A Method for Constructing Trap Door Knapsacks

The designer chooses two large numbers, m and w, such that
w is invertible modulo m (equivalently GCD(w,m)=1). He selects

a knapsack vector, a' which satisfies (6.1) and therefore zl-

lows easy solution of S' = a' ® x. He then transforms the

easily solved knapsack vector a' into a trap door knapsack vec-
tor a via the relation
- - t
ag =w - a', mod m (6.3)

The a; are pseudo-randomly distributed and it therefore appears

-
L%
o L
that anyone who knows a, but not w and m, would have great dif- i o~
ficulty in solving a knapsack problem involving a. The ! Ef
| —
designer, on the other hand, can easily cempute ! E;
O
$'=w -5 modm 6. <
=1 _
=w - E x; +a; modm (6.5}

T

NI BLY

n

Wl E X, *w-a', modm (6,6)
i i

E X a'i mod m (6,7)

If m is chosen so that

m > E a'i (6.8)

then (6.7) implies that S' is equal to :E'xi » a'; in integer

1?

arithmetic as well as mod m. This knapsack 1is easily solved

for x, which is also the solution to the apparently diffiecult,

but trap door, knapsack problem £ = a * x.

o T—

To help make these ideas clearer, we give » small example
with n = 5. Taking m = 8443, a' = (171,196,457,1191,2410), and

w = 2550 (so H_1 = 3950), then a2 = (5457,1663,216,6012,7439).

6/u/79 Chapter VI Page 65

4&:""

THE TRAPDOOR KNAPSACK

Given S = 1663 + 6013 + TU39 = 15115, the designer computes
-1

S'zw % modm (6.9)
= 3950 - 15115 mod 8443 {(6.10)
= 3797 (6.11)

Because S' > a'5. he determines that Xg = 1. Then, using (6.2)
for the 2' vector, he determines that Xy = 1, Xg = 0, x, =1,

x, = 0, which is also the correct solution to S = a * x.

Anyone else who does not know m, a', and w has great dif-
ficulty in solving for x in S = a * x even though the general

method used for generating the trap door knapsack vector a must
bg publie, His té;; can be further'complicated by scrambling
the order of the 35 and by adding different random multiples
of m to each of the 254

The exsmple glven was extremely small in size and only in-
tended to illustrate the teechnique. Using n = 100, whieh is

the bottom end of the usable range for secure systems, m can be

chosen uniformly from the numbers between 2201 + 1 and 2202 -

15 @', can be chosen uniformly from the range [1, 2100]; 3'2
can be chosen uniformly from [210U + 1, 2-2100]: a'3 can be
chosen uniformly from [3°2100+1, H-2100]: e a'i can be

chosen wniformly from [(2171-1)-2100+1, 2i-1-2100)]: - a'100

can be chosen uniformly from [(299-1)-2100 +1, 299-2100]; and

w can be chosen uniformly from [2, m-2] and then repeatedly di-

vided by the greatest common divisor of w and m, to yield the

value of w that is actually used.

These cholices ensure that (6.8) is met and that an op-

6/4/79 Chapter VI Page 66

U T ;" i"-f:i.’ r Flr";\;a’{(,;;'-r“

T R ST ,'L.’-'.‘-.'.m:’--ln,'-f-;-:"éi:'g}',f'i-l’

THE TRAPDOOR KNAPSACK

ponent has at least 2100 possibilities for each parameter and

hence cannot search 6ver even one of them. Note that each ay
will be pseudo-randomly distributed beﬁueen 1 and m~1 and hence
will require a 202 bit representation. S5 will requlire a 209

bit representation, so there is a 2.09:1 data expansion from Xx

to 5.

LR NEOIIT T TRRARIER

6/4/79 Chapter VI Page 67

THE TRAPDOOR KNAPSACK

3. An Iterative Method

‘This section discusses techniques for improving the secu-
rity and utility of the basic methods.

In the first method we transformed a hard and apparently
very difficult knapsack problem, a, into a very simple and
easily solved knapsack problem, a', by means of the transforma-
tion:

a', =W 3y mod m (6.15)
We could solve a knapsack involving 2 because we could solve a
knapsack involving a'. Notice, though, that it does not matter
why we are able to solve lmapsacks involving a', all that
matters is that we ca2n solve them. Rather than requiring thst
a' satisfy (6.1), we could require that a' be transformable
into a new problem, a'', by the tran;formation:

a"i = w' . a'i mod m' (6.16)
where the new problem, a'', satisfies (6.1), or is otherwise
easy to solve, Having doﬁe the transformation twice, there is
no problem in doing it a third time. That is, we select an a'!
which is easy to solve, not beceuse it satisfies (6.1}, but be-
cause 1t can be transformed into a''', which is easy to solve,
by:
1

al'l', = wn' - gt

at'ty mod m'! (6.17)

i

It is eclear that we can repeat this process as often as we

wish.

With each successive transformation, the structure in the

6/4779 Chapter VI Page 68

Y

o

.

5]

i

.T{}F;{

THE TRAPDOOR KNAPSACK

publicly known vector, @, becomes more and more obscure., In

essence.'we are encrypting the simple knapsack vector by the

repeated applicetion of a transformation which preserves the’

basic structure of the problem. The final result a appears to

be a collection of randcm numbers. The fact that the problem

can be easily solved has been totally obscured.

The effect of repeating the process several times is very
different from that obtained with certain ciphers, such as a
simple substitution. A simple substitution cipher 1s not
strengthened by repetition because the compoéition of two sub-
stitution ciphers"is yet another substitution cipher, The
{(w,m) transformstions do not have this closure property. The
following example shows that the repetition of two (w,m)

transforms is not iIn general equivalent to a single (w,m)

transform.

If w=3,m=89, w = 17, m' = 47, and 2'' = (5,10,20)

~

then a' = (38,29,11) and a = (25,87,33). Assume there exists W

and m such that

-~ ~

3 =W a't mod m (6.18)

Then 2, = 25 and a”1 = 5 implies that

25 =w *r Smodm {6.19)

From this we have

2+ 25 =w -2 ""5mdm (6.20)

or

~

50 = w « 10 mod m (6.21)

But now the relation 8, = 8T and a''_ = 10 implies that

2

674779 Chapter VI Page 69

I LISRAR Y

WIANE)

..-----------!----IIIIIIIIIIIIII-IIIIIlIIIIIIllIIIlIIIIIIIIIIIIIIIIIIII!-I-I..'

)|

1HE TRAPDOOR KNAPSACK

B7 = ; * 10 mod ; (6.22)
so 87 = 50 mod ;, or 37T = 0 med ;. which implies that ;'= 37.
Equation -(6.19) then becomes

25 = ; * 5 mod 37 (6.23)

sow=5, But if w=5, and m = 37, then equation (6.18) for

]
u

3 33 and a”3 = 20 becomes

33 =5+ 20 mod 37 (6.24)
or 33 = 26 mod 37, 2 contradiction. We conclude that no such ;
and ; can exist.

The original, easy to solve knapsack vector can meet any
condition, such a; (6.1) which guarantees that it is easy to
solve,

It is important td consider the rate of growth of a, be-
cause this rate determines the data expansion inveolved in
transmitting the n bit Qector X as the larger quantity S. The
rate of growth depends on the method of selecting the numbers
but, with n = 100, each ay need be at most 7 bits larger than
the corresponding a'i, each a'i need be at most 7 bits larger
than a"i, ete, ete. Each successive stage of the transforma-
tion need 1increase the size of the problem by only a small,
fixed amount. Repeating the transformation 20 times will add
at most 140 bits to each a; - If each ai is 200 bits long to
begin witb, then they need conly be 340 bits long after 20

stages, and S i= representeble in 347 bits. The data expansion

is then eonly 3.47:1.

E/U4/79 Chapter VI Page 70

S TN LIRAH RS

—————————————————EEE

THE TRAPDOOR KNAPSACK

4, Compressing The-Public File

As described above, the Ith user must place his trap door -
¥napsack vector, a(I), in a public file. The Jth user can then
look up a{I), and send a message x to I, hidden as S = a(I) *
X. To avoid storing the rather large vector'g(I), J cduld ask
I to transmit a(I) to him. But, unless J has some method for
testing a(I), user K might fool J by sending him a(K), and say-
ing it was a(l). J would then mistakenly tell all his secrets
to K. A method is needed for J to convince himself that he was

-

really sent 2(I). With a public file, each user can make one

personal appearance when depositing his vector and, after so %g
identifying himself to the system, he could identify (suthenti- %
cate) himself to any user by his ability to decipher messages g%
hidden with his vector. The file itself must be protected, but :;
this is relatively easy because only write protection is need- EE

—

[}
o

Y

ed.

To preserve this guthentication benefit of the public
file, but to reduce its size(zﬁ or more kilobits per user) we
suggest storing a 100 bit bne—way hash total, h{a(T)], instead
of a(I} itself. When J receives a(I) from I he computes
h[2(I)] and checks this against I's value stored in the public
file. The hash function, h, must be a one-way function [61,
[381, [7), [2B] so that K cannot generate a2 new vector a(K)
such that h[a(K)] = hl[(a(I)], without having to perform 2 com-

putationally impossible feat.

6/0/79 Chapter VI Page 71

||llllllllllllllllllllllllllIllllllllllIllllllIllllllllllIIIIlllIIIIIIIIlIllllllI|||||l|||||||||||||||||_||IIIIIf

THE TRAPDOOR KNAPSACK

Allowing 200 bits for storing the user's name and address,
{(or "phone number™}, the public file now contains 300 bits, in-
stead of over 20 kilobits, per user. & system with a2 million -
users requires a 300 million bit, instead of a 20 billion bit,
public file. Transmission costs are comparable for both im-
plementations.

A 100 bit number can be coded as 20 alphanumerie charac-
ters, which is small enough to fit in a phone book. A typical
entry would look like this:

Joe Smith......497-1573

KSDJR E6K65 3GFVM OMKUK
The extra entry, KSDJR E6KES 3GFVM OMKUK, is the one-way hash
total of Smith's trap door knapsack vector, a(Smith). With
this information, we can call up Smith, and hold a secure

conversation with him,'which no one else can understand. We do

not need tc have met Smitb previously to know we are talking

S LU LIS

with him or for him to khpw he is talking with us.

Transmitting 20 kilobits on a high speed, 50 kbps link,
takes 0,4 second, but on a low speed, 300 bps link, it takes
over a minute. The transmission time can be reduced by a fac-
tor of 5, to about ¥ kilobits, which takes less than 15 seconds
to transmit at 300hbps, by cutting the number of ay to n=20.
The vector x, however, now has only 20 binary elements, which
is small enough to allow solution by exhaustive search. To
malntain security, the information 1in the x vector must be in-

creased to about 100 bits, while keeping n = 20. This can be

6/4/79 Chapter VI Page 72

= .
523

- THE TRAPDOOR KNAPSACK -

done by allowing each element, Xy to take on values in the set

{0,1,2,3,+..,311, instead of just in {0,171}, Specifying each Xy

takes 5 bits, and specifylng the whole vector x takes 100 bits. -

Equation (6.1) must now be modified to
i-1
a; > 31+ 2 :aj (6.25)
Jj=1
If n 1s reduced to 1 and the single element of the x vee-

100

tor assumes a value in {0,1,2,... 2 =1}, then the system 1is

easily broken because
x = 8/a) (6.26)
When n=2, the system can also be broken easily, by an al-

gorithm similar in spirit to the greatest common divisor algo-

rithm. It seems that small values of n weaken the system, and

further research i1s needed to determine how small n can be,

while still preserving security. The value n = 20 suggested
above must be treated with suspicion until an adequate certifi-

cational study is conducted.

6/4/79 Chapter VI Page 73

BRI AR R R lafATas Fady!

+HE TRAPDOOR KNAPSACK

5. ~Signatures

As discussed in [6], the need for & digital equivalent of -
@ written signature 1s a major bharrier to the replacement of
physical mall by teleprocessing systems. Usual digital authen-
ticators protect against third party forgeries, but cannot be
used to settle disputes between the transmitter and receiver as
to what message, if any, was sent. A true digital signature
allows the recipient to prove that a particular message was
sent to him by a payFicular person. Cbviously, 1t must be im-
possible for the recipient to alter the contents of the message
and generate the corresponding signature, but it must be easy
for him to check the validity of a2 signature for any message
from any user. A digitel signature can also be used to gen—
erate receipts. The recipient signs a message saying, "I have
received the following message: TEXT." This section describes
how trap door knapsacks might be used to generate such signa-
tures and receipts.

If every S in some larﬁe fixed range had an inverse image
X then it could be used to provide signgtures. When the Ith
user wanted to send the message m he would compute and transmit
x such that 2(I) ®* x = m. The recipient could easily compute m
from x and, by checking a daﬁe/time field (or some other redun-
dancy in m), determine that the messzge was authentic., Because
the recipient could not generate such an x he saves x as proof

that the Ith user sent him the message m.

6/4/79 Chapter VI Page T4

AINFLTTL LIDIARIED

THE TRAPDOOR KNAPSACK

This method of generating signatures can be modified to
work when the density of solutions (the fraction of S between 0
and EE éi which have solutions to x ®* a3 = §) is less than 1, -
provided it is not too small. The message m is sent in plain-
text form, or encrypted if eavesdropping is a threat, and a se-
quence of one-way functions (61, [38], [7], [28)] v, = F1(m), Yo
= Fz(m),... are computed. The transmitter then seeks inverse
images for Y91 ¥orens until one is found =and appends the
corresponding x to m as a signature. The recéiver computes y =

2 % x and checks that y is equal to Yie with k not too large,

-

for example at most 10 times the expected value of k.

The sequence of functions Fi(') ean be as simple as;

Fi(m) F(m) + i (6.203)
or

Fi(m)

H

F(m+i) (6.20Dp)
vhere F(*) is a one-way function. It is necessary that the
renge of F(*) have at least 2100 values to foil trial angd error
attempts at forgery. If the message is much loenger than 100
bits, the expansion caused by the addition of a 100 bit authen-
tication field is unimportant.

If the trap door kﬁapsack vector were generated as sug-
gested st the end of section 2, the solution density would be

100), and over 2100

less than 1/(2 Y would have to be tried, on
the average, before one with a solution was found. It is pos-
sible, however, to use the iterative method of section 3 to ob-

tain a2 Bsolution density of approximately 1/(10”) with two

6/4/79 Chapter VI Page 75

R I R T

e

[

e

[LIDVATIED

{

1R

-
“r

THE TRAPDOOR KNAPSACK

iterations or 1/(106) with three iterations, when n = 100.
First, a knapsack vector a'' with a solution density near 1 is
selected. If a'' = (1.2.“,8,..;.299) then the solution density -
is 1, but increasing some of the larger a"i need not grestly
reduce the solution density. For example,
(1,2,4,8,17.35,68,142) has a solution Qensity of .92 and still
satisfies (6,1). BSuch choices may not be necéssary, but they
~ provide an additionzl margin of safety at almest no additional
cost.

After selecting a'', parameters m' and w' are chosen such

i

door knapsack vector

that m' > a'', “and w ' exists modulo m'. The weak trap

a' = w' = a"! mod m' . (6.27)
is then computed. New parameters m > z 2'y and w {with W
existing mod m) are chosen, and the more secure trap door knap-
sack vector

a=w-*a' mod m (6.28)
is eomputed. The process can be iterated more than twice to
obtain the final vector, 3, but the sclution density typically
decreéses by a factor of n/2 with each iteration. When used
for hiding information this decrease is of-little importence,
but when used for signatures, several iterations are zll that
can be afforded because of the need for a high solution densi-
ty. Witﬁ s0 few iteratlons, it is possible for two adjacent ay

to be in the same ratio (usually 2:1) as they were in the 2

vector. This weakness can be overcome by adding multiples of

6/4/79 Chapter VI Page 76

L T i TR~

T .. PR T T T I
N Lo S AT ST e R

THE TRAPDOOR KNAPSACK

m' (or m) to a subset of the a‘i (or ai) which suffer from this
problem. This decreases the sclution density somewhat, and ac-
counts for our 1/(10”) and 1/(106) estimates for two and three -
iterations when n = 100,

A small example is agein helpful in: i1llustrating the

method. Starting with

a't = (1,2,4,8,17,35,68,142) (6.29)
whose components sum to 277, we choose m' = 261 and w' = 176
(w'_1 = 167), resulting in
a' = (176,61,122,244,82,49,37,257) (6.30)
The second, third ;ﬁd fourth componeqté are in the ratio of 2:1 1E§
which can be hidden by adding m' to the third component to ob- EE%
tain the new vector ;Ei
a' = (176,61,413,244,82,49,37,257) (6.31) _ é
whose components sum to 1319. Choosing m = 1343, w = 498 (W 12“

= 925) vields , =
a = (353,832,195,642,546,228,967,401) (6.32)
whose components sum to 4164. The density of solutions using a
is 256/4164 = ,061 so approximately 16 attempts are needed, on
the average, to obtaln a signature. This agrees well with the
estimzted range of n2/ﬂ = 16 to n2 = 64,
The density of solutions can be increased by restricting
the Yy to lie near the middle of the range (0, z_a_i). say
between 1000 and 3000 in this example. The law of large

numbers indicates that for most x, the sum 2 * x will lie in

this range.

6/4/79 Chapter VI Page 77

THE TRAPDOOR KNAPSACK

_Shamir [43] has developed a different method of using the

knapsack problem to obtain signatures.

6/4/79 Chapter VI Page 78

1L

wvin

I3

ST UTHF ki

THE TRAPDOOR KNAPSACK

6. Discussion

We have shown that 1t is possible to eonstruct trap door
knapsack problems and that Informstion and signatures can be
hidden in them for transmission over an inseéure-channei. Con-
ventional cryptographic systems also cen hide Information and
authentiecators during transmission over an insecure éhannel.
but have the disadvantage that first a Ykey" must be exchanged
via courier service or some other secure means. Also, In con-
ventional céyptography. the authenticator only prevents third
party forgeries and’cannot be used fq settle disputes between
the transmitter and receiver as to whether a message was actu-
a2lly sent.

We have not proved that it i1s computationally difficult
for an opponent who does not Imow the trap infermation to solve
the problem. Indeed, proofs of security are not yet available
for normal cryptographie systems, and even the generel knapsack
problem has not been proved difficult to solve. The theory of
computational complexity has not yet reached the level of
development where such proofs are feasible, The best published
algorithm for solving the knapsack problem is exponentizl, tak-
ing 0(2“’2) time and space [10]. Schroeppel [33,unpublished])

n/2 n/4

has devised an algorithm which takes 0(2 ' ") time and 0(2 ')

space.

Falth in the security of these systems must therefore rest

on intuition and on the failure of concerted attempts to break

6/4/79 Chapter VI Page 79

AT

S YN LI,

THE TRAPDOOR KNAPSACK

them,

Attempps to break the system can start with simplified
problems (e.g. assuming m-is known) (see chapter VII section:
5.) If even the most favored of certificational attacks is un-~
successful, then there is a margin of safety against cleverer,
wealthier,.or luckier opponents. Or, if the favored attack is
successful, it helps establish where the security really must
reside.

As noted, the technigues suggested in this chapter gen-

eralize to Xs in the set {0,1,2,3,...,N}. The advantages and

weaknesses of such systems deserve further study.

Recently, Rivest, Shamir, and Adleman [31) have proposed

3R VAVLA LML

"7

another public key ceryptosystem, which yields signatures more

directly because the density of solutions in their problem is

1. Their system also requires alsmaller key (apparently €£00
bits versus 20 kilobits); but is significantly slower. Neither
system's security has been adequately established but, when_
iterated, the trap door lmapsack appears less likely to possess
a chink in its armor. wﬁen used for obtaining signatures, the
trap door knapsack appears to be the weaker of the two. Both

publie key systems clearly need further certification and

study.

6/4/79 Chapter VI Page 80

THE TRAPDOOR KNAPSACK

T. Footnote

Other definitions of the knapsack problem exist in the-
literature [50]. [11], {31}, The definition used here 1is
adapted from Karp [13}. To be precise, Karp's knaésack problem
is to dete;mine whether or not a solution x exists, while the
corresponding cryptographic problem is to determine what x is,
given that it exists. The ecryptographic problem is not NP~
complete, but is just as hard as the corresponding NP-complete
problem. If there”is an algorithm for solving the cryptograph-

ie problem in time T{n), i.e., for determining x given that it

1TV VNG MLV MIRAD

exists, then we can determine whether or not an x exists in
time T(n), i.e., solve the corresponding NP-complete problem.
If the algorithm determines x in time T(n), then some x exists.

If the algorithm does not determine x in time T(n), or deter-

mines an incorrect x —which is easily checked-- then no such x

exists.

6/4/79 Chapter VI Page 81

—
K-E

T LRI L SEATTR

VII. HOW SECURE IS THE TRAPDOOR KNAPSACK?

1. Introduction

Although the knapsack problem can be used as the basis of -
a public key cryptosystem, a closer investigation of its secu-
rity is needéd in order to select the size and exact type of
trapdoar knapsack to use, This chapter is a study of the knmap-
sack problén from several perspectives, in aﬁ attempt to deter-
mine how secure it is, and what type of trapdoor knapsack is
most sultable for actusl implementation. Besides discussing
the best known algorithms for solving the knapsack problem, and
for solving specizl cases of the trapdoor knapsack problem, it
also gives direct ;eductions of Boblean circuits to the knap-
sack problem., (The problem of Boolean circuits has already
been shown to be NP-complete. As a byproduct of thls reduction
we show that if DES [24] is secure, so are general kmapsacks
with n = 10,000.) The proofs presented are accessible to anyone
with a modest lmowledge of Boolean circuit theory, and require
no theoretical background, (in particular, no knowledge of NP
complete problems is assumed.) They can serve to demystify com-
plexity theory as applied to the knapsack problem,

There are two aspects to the complexity of the knapsack
problem. First, does there exist a method of solving the trap-
door knapsack which cannot solve the general knapsack problem?
That is, is the trapdoor knapsack problem easy to solve even

though the general knepsack problem is NP-complete and there-

6/4/79 Chapter VII Page B2

O B LI W B NN EAN

AN ; .:'-i'_l.: k¥4

HOW SECURE IS THE TRAPDOOR KNAPSACK?

fore presumably hard to solve? Secondly, what 1s the complexi-
ty of the general knmapsack problem? Do there exist uvnusually
efficient algorithms for solving the knapsack problem? Do
there exist algorithms whieh will repidly solve seome knapsack
problems? Thls chapter first attempts to give a better ldea of
tﬁe complexity of the general knapsack problem, both by consid~
ering the most efficient algorithms known_for 1ts solution, and
by examining diréct'reduetions of Boolean circuits to the knap-
sack problem. It will then examine scme algorithms which can
éfficiently_ break certain specialized cases of the trapdoor

-

knapsack problem.

6/70/79 Chapter VII Page 83

¢ et Wedlapp

i TR

SR W LT T

=X

HOW SECURE IS5 THE TRAPDOOR KNAPSACK?

2. The Knapsack Problem

The knapsack problem is: given an integer S and an integer
vecEPr a = a1,.a2, a3.... a find a vector x = Xq1 Xope-s X

where X4 is in {0,1} such that S = x * a, (where "®" denotes

dot product.)

Karp [13] showed that this problem is NP-complete. The
best published algorithm for solving this problem requires 2n/2
operatioﬁs and 2n{8~memory [10]. This algorithm is simple in
nature: all possible sums involving 214 8ny ... B, are gen-
erated, and the list of 2n/2 possible sums is soried, Then;
all possible sums involving 8/2417 ns24ps e+ 8, @re gen-
erated, each sum is subtracted from 3, and the resulting_list
of numbers is sorted. If 2 number in the first 1list matcheé a
number in the second list, then a solution exists and can be
readily computed. (An unpublished algorithm which runs in time

n/z and in space 21’1/u has been discovered by Schroeppel [331).

2

The praof‘ by Karp ‘that this problem is HNP-complete is
elegant and concise, but gives little hint as to whether the
best known algorithms (mentioned above) are very close to the
best possible algorithms or whether much better zlgorithms are
possible, A more fundamental problem with the use of the

theory of NP complete problems is that the nondeterministic po-

lynemial time Turing machine was reduced to the knapsack prob-

6/4/79 Chapter VII Page 84

e s 1A T RAFEES Bl ET W I B2 RwdF

| [

BOW SECURE IS THE TRAPDOOR KNAPSACK?

lem, but the actual complexity of a nondeterministiec Turing
machine has not been investigated closely enough for crypto-
graphic purposes: iIn cryptography, constant factors are VERY.
important.

Rather than reduce & non-deterministic Turing machine to'
the knapsack problem, it is more apprépriate to reduce Boolean
cirecults to the knapsack problem. The ratlonale for this is
simple: modern cryptographlec systems are actually built out of
Boolean circuits, l.e., Yeand,"™ "or" and "not" gates. Crypto-
graphic systems built out of arbitrary combinations of sueh
logical building ’blocks have already been certified. As a
consequence, reducing Boolean circuits to the knepsack problem
directly will not only let us infer that the knapsack problem
is NP-complete, it will 2ls0 let us draw some inferences about
2 lower bound on n needed for a secure system., If it is possi-

ble to embed the problem of cryptanalyzing an already certified

cryptographic system into =z knapseck problem with n = 10,000,

then we can safely infer that there is no unifbrmly fast algo- .

rithm whieh can solve -knapsack problems with n = 10,000,
Furthermore, the details of the actual reduction might give us
some feel for the security of the knapsack problem.

We first extend the problem of Boolean circuits by inelud-
ing a multi-input multi-output ™gate," which is intended to
model the ROM-based 2-boxes (substitution boxes) found in many
modern cryptographic functions. We define a “(k,m)s;box" as a

device with k Boolean inputs, and m Boolean outputs, where the

6/4/79 Chapter VII Page 85

32550 ¥ NS FmBEaT W T A fordd

HOW SECURE IS THE TRAPDOOR KNAPSACK?

function which determines the output from the input is arbi-

trary. As an example, figure 1 shows the truth table for a

(3,2)5-box.

input output
0 - 01
001 11
010 00
011 10
100 11
101 - 11
110 01
111 ' 00

Figure 1

The reader should notiéé that "and" and "or" gates are
just (2,1)5-boxes, and a "not" gate- iz just a (1,1)S-box.
These devices will therefore not be considered separately.

In order to embed a modern cryptographic function into the
knapsack problem, it is sufficient if we can embed arbitrary
(k,m)S5-boxes and their interconnections. This c¢an be done
easily, and the (3,2)5-box of figure 1 is shown in figure 2 em-
bedded in a knapsack problem with n = 13. The {ai} and S have
been chosen so that exactly B x vectors satisfy S = a * x and

these 8 vectors specify the dats of figure 1 under the follow-

6/4/79 Chapter VIT Page 86

I TR - L RN [P TN . A
T R R R L R AN R

AN e d RATERS EnTET i W T YTy

HOW SECURE IS THE TRAPDOOR KNAPSACK?

ing interpretation.

a, = 000—01e——=e-—1

001t —T 1
a = 010=-00-wm—e—oo-1

1

, 2y = 011—10—-

ag = 100— 11— ———1
85 = 10111
a, = 110mef == —=1
a’a = 111 —D0———— e 1
input 1 ag = 100--00~—mmmm0
input 2 CRT D10~—00——=e——=u-D
input 3 a,q = 00100 ——=a—=0
output 1 8,5 = 000—10~——mme— e}
output 2 343 = 000«=01"——=e—eweeeD
sum 8§ = 111—1T——e———e]
Figure 2

The ai are shown in binary, and "-" is used for zero's
vhich are not structurally important, but which are used only
for spacing and to prevent carries between the three structural

fields during addition of the ay - and x represent

Xgr ¥qp° 11

the 3 input values to the S-box in complementary notation. If

6/4/79 Chapter VII Page 87

ST SRR
LR

ST F AT SAETHE R A W OB 9 VR

BOW SECURE IS THE TRAPDOOR KNAPSACK?

xg is 0, then input 1 to the S5-box is a 1. If x9 is a 1, then
Input 1 is a 0. Similerly for X410 and Xqqe The outputs are
represented, again in complementary logic, by x

and x The "

12 13°
vgriables xT_through Xg are not interpreted, they are part of
the "internal workings"™ of thils S—bo* representation. The fi-

nal "1" in 3, through ag coupled with the requirement that S
end in 1 guarantees that oniy one of X, through xB can be a 1,

all the rest must be 0's.

Perhaps the best explanztion of this S-box is to work
through an example of what happens when a given 3-bit input is
specified as parfl;f the x vector, and how it eventually pro-
duces the correct 2-bit output, also as part of the X vector.

Figure 1 shows that on input 110 this S-box must produce

=0, and x =

output 0t. Input 110 corresponds to Xg = 0, x 11

10
1, and output 01 corrésponds to Xqp = 1 and x13 = 0. To force
8 vwhich corresponds to this input-ocutput pair, to be ineluded
in the sum we set the first three bits of S te 111. Only one
of X, through Xg can be a 1, and the Xy selected must make the

first 3 bits of the sum equal 111. Because carries are

prevented between the three structural fields, the only possi-

ble choice is Xy = 1, and the rest of x, through Xg are equal

to 0. HNow, Xq has a two-bit "output" section, which is the
correct output-(01) for the original input 110. By choosing
the second field in 8 to be 11 we forece X1 and X13 to assume
the correct output in complementary notation (10) in a manner

analogous, but precisely reversed, from the manner in which the

6/L/79 Chapter VII Page 88

R R LT paa

o

P

HOW SECURE IS THE TRAPDDOR KNAPSACK?

input selected x, in the first place.

7

The reader should note that a, through 2q In figure 2 are

1
nearly exact copies of the 3-box shown in figure 1, the only
change being tﬁe addition of structura;ly unimportant 0's, in-
dicated with "-". The last.structural field is the constant,
1. Each of ag through 214 has a single 1 bit, surrounded by 0
bits to form an "identity matrix" 1in the first structural
in the s=second

field. The same is true for 34 through a

2 13

structural field.

The knapsack problem in figure 2 models the (3,2)S-box in
figure 1, but thé’;etails of how to interconnect two or more
S5-boxes into a single circuit must still be developed. For
simplicity, we do this with an example using twe identical S5-
boxes. These can be represented by a single knapsack with n =
26, and of twice the "width" as the original knapsacks with six
struetural fields, The first three fields are used only for a,

to 2 to represent the first S-~box. The second three fields

13
are only used for a through 3.6 to represent the second 3-
box. ~By including a non-structural buffer of 0's between
fields three and four, any X vector whiech solves the knapsack
problem is consistent with the input/output relation of both
S-boxes. Figure 3 shows the result of applying this procedure
to generate two non-interconnected S-boxes identical to the 3~
box of figures 1 and 2. -

To interconnect an output from one S-box to an input of

the other S~box, we must force the associated X, and xj to be

6/4/79 Chapter VII Page 89

TTITTE XA ECF pNIEwE W ¢ R pTH

el

HOW SECURE IS THE TRAPDOOR KNAPSACK?

equal to each other, To conneet input 1 of the first S~box (ag

in figure 3) to output 2 of the second S-box (826 in figure 3)

we must force x. to equal x26. This 1s done by making x

9

identical to_xzs, i.e..-a26 is removed, and 2 new aé is defined

to be the sum of ag and B¢ This is 11lustrated In figure A4,

9

In general, to connect By with 2 create aB = za‘j + a,, and

jl
delete the old 2y«

As an example, if we wished to have two (3,2)5-boxes ex-
actly like. the one shown 1n figures 1 and 2, and to Iintercon-

nect the second ocutput of cne with the first input of the oth-

er, the result would look like figure 3.

6/4/79 Chapter VIT Page 90

PRI T ST R e R G LR S N T T T

CVIIT TRIVT W W BT

s B

T3

Lk

input
input
input

output
cutput

input
input
input

output
output

sum

6/4/79

L Ny =

Ny —

wny —

) =

HOW SECURE IS THE TRAPDOOR KNAPSACK?

oo hpom
M-I\ WM =

WOBHOW oW oA

000—01 1}
001—11 1!
010—-00 11
011—10 11
10011 11
101==11 1
11001 11
111—00 11
100--00 '
010~-00 :
001—00 %
000—10 oF
000--01 0!

1 =000—01— e
0T P ——

1=010—00mmmm—eee—1
1=011m=1 00— ——1
{=100m=11—mmmmmmmn 1
1= 101 —1 1]
1211001 mreem 1
JECE | P, T, M—
1 =100—00 e 0
) ~010~~00—————mmm 0
1 =001 —00—mmm e 0
R 1o]o MY, W
1 200001 —mm—mmmmm0
i P, & PO I | | S | PERSOSO

Figure 3

Chapter VII Page 91

T TNV ERRTEAE

L S L T

input 1
(and also
output 2)
input 2
input 32

-

output
output

a8

input 1
input” 2
input 3

output 1

sum

6/4/79

HOW SECURE IS THE TRAPDOOR KNAPSACK?

oo bhowno
=1 hA S

i

" uwu

1t

000—01 14
001—11 1}
010—00 1}
011—10 1)
100—11 1}
101—11 11
11001 1
111—00 11
100=--00 0} 01
010—00 0}
001—00 0}
000--10 0l
000—01 01}

~000=01—mmmmmm =1

00111 — o1

~010m-00—m—mmmm—1
L PR |, FE—

LY, S P PR |
~110—07mmmmm—mee1

:
1
]
i
!
| =1000—1] ——mer e 1
!
;
]

=-111—00———r——- i

1 =100 —00=—ecm——mem=m=0

1 =01 0=e-00——emm~==0

P T PR M— 0

! 00010 emm 0

S E R [V | [RENESUUI—— N | | PSS | PRSI

Figure U

Chapter VII Page 92

4
'
i
H
[
{
]
i
i
|
1
‘
'

HOW SECURE IS THE TRAPDOOR KNAPSACK?

From figure 2 it is seen that a {k,m)S-box can be imbedded

in a knepsack of size 2k+k+m. Qutputs of one S-box will ususl-

ly serve as Inputs to other S-boxes, so the slze of the knap--

sack which_represents the interconnection of several S-boxés
will be somewhat reduced from the sum of the sizes of the knap-
sacks representing the isolated S-boxes.

To model eryptanalysis, note that in a known plaintext at-
tack, the key is the only free input to the circuit because the
plaintext and ciphertext are fixed. (The known plaintext and
ciphertext values can be obtained in the circuit by several
methods, the easiest to explain is to use (1,1) S-boxes whose
outputs are independent of their inputs.) Any x veetor which
solves the resultant knapsack problem specifies the key in com-
plementary notation, Solving the knapsack problem is thus at
least as hard as cryptanalysis of the system modeled by the
Boolean circuitry.

It is now possible to embed the problem of cryptanalysis
of a modern encryption function into the knapsack directly. s
an exsmple we consider embedding the National PBureauv of Stan-~
dards Data Encryption Standard (DES) [24]. Although there is
controversy about the security of the DES [5], [15], there is
little doubt that an encryption function with an equivalent
complexity could be made secure. Becsuse the embedding we
describe could be used to embed any encryption function of com-
parable complexity into the same size knapsack problem, the

security of the DES is not an issue.

6/4/79 Chapter VII Page 93

e ———

HOW SECURE IS THE TRAPDOOR KNAPSACK?

We shall not consider the DES algorithm in any great de-~
tail, except to estimate the number and type of S-boxes it con-
tains. Tt has 8 S-boxes, but requires 16 "rounds" or itera-
tions. That 1s, the DES is a clocked sequential eircuit which
requires 16 dlock periods to compuﬁe-a result. Becsause we can
model only combinatorial circuits, and not sequential circuits,
we must "unroll" the 16 rounds into a single combinatorial eir-
cuit 16 times longer than the circultry required for 2 single
round. We shall therefore compute how large a2 knapsack would
be-required to model a single round of the DES algoritﬁm, and
then multiply by 16,

There are 8 (6,4)3-boxes involved in one round. In addi-
tion, there are 80 (2,1)S~boxes used for exclusive-oring. Of
these, U8 are used to ex-or the key with the date, and 32 to
ex—or the two halves of the data. The result is 8 - (26 + 6 +
4) + 80 - (22 +2 + 1) = 1152, To continue this for 1& rounds
would require a kmapsack with n = 18432,

This estimste is conservative (too large) for two major

reasons: First, the (2,1)5-boxes are used for exclusive-or

gates, and exclusive-or éates can In fact be Implemented in =z -

knapsack of size n = Y4, rather than n = 7. Second, this counts
the input of one S-box which is also the output of a preceding
S-box twice, again inflating the size of knapsack needed, If
both of these factors are taken into acecount, the size of the
knapssck required shrinks to n = 11,268, A few more improve—

ments can yield an n of about 10,000, but further improvements

6/4/79 Chapter VII Page 94

(i

— e e

B E T TN L b e A g g .
SN SRR N e

HOW SECURE IS THE TRAPDOOR KNAPSACK?

become more difficult at this point. We shall use the estimate
n ; 10,000 for the rest of the chapter.

The interpretation given to this fact {(that the DES-can be.
imbedded in a2 knapsack of size n = 10,000) is guite straight-
forward: sﬁould an algorithm exist which ean effielently gﬁd
uniformly solve knapsack problems with n = 10,000, then the
DES —-aéd all other eneryption functions of similar
coﬁplexity—- can be broken. PBecouse the second statement is.
highly implausible, it is.alsc highly implausible that any fast
glgorithm will be found for solving arbitrary knapsacks with

n=10, 000, -

b
u
]
L
H

The best known algorithm for sblving the knapsack problem,
coupled with the largest computer that can be Imagined will be
totally unable to solve knapsack problems with n = 1000, Even
solution of knapsacks with n = 100 will be prohibitively expen-
sive with foday's technology.

Even if we accept n = 100 as a lower bound and n = 10,000
as an upper bound on the size of knapsack problem necessary for
a secure system, there is still a great deal of difference
between the two. Fortunately, the upper bound seems very
loose. A knapsack with n = 10,000 can actually embed any DES-
like encryption fuﬁction with 16 - B = 128 (6,4)3-boxes, as

well as some auxiliary logie,

6/4/79 Chapter VII Page 95

R L T S R T Yot R T e -
Ioepeatie Sy ' B T b e T ot s PP TR
iy TETT A AL L S T T L T By

LR

HOW SECURE IS THE TRAPDOOR KNAPSACK?

3. Double Sum is Easy to Solve

An apparently effective methed for reducing the value of n
in the trapdoor knapsack (thus reducing the size of the publie
enciphering key g} is to allow the Xy to take on values in the

range {0,1,2, ... B} instead of the range {0,1}. Starting with '

1 (the usual case) and pushing this to its lim-

1 and B = 2100—1 with

n = 100 and B

it produces n

S=za, * x

1 1

as the enciphering operation. Cryptanalysis Is easily done by
one division. The case n = 2 results in the double sum problem

- and B, find integers x

defined as: given integers 5, 814 2, 1
and Xo such that
S = 8y ° Xy + 8, * X, (7.1
and 0 < x4, X, <B (7.2)

We may assume that GCD(a1.az) = 1 since otherwise we can
compute their GCD and divide CIR PN and S by it to get 2 new
problem with.GCD(a1.a2)-= 1. Then we can use the GCD algorithm

to generate numbers ¥, and y2 such that

T=a -y +2, " ¥,

Multiplying this equation by S5 gives

5 = ay (s - y1) + 8, - (s - y2)
We also have

6/84/79 Chapter VII Page 96

ERETE L

- e L e ey T T R A T U T S R e W
B P A A rur et e Sra e S Tl L e iLaae i i LDl e

HOW SECURE IS THE TRAPDOOR KNAPSACK?
0= 8 * 8, + 3, ¢ (-a1)

If we add multiples of the second equation to the first,
we will still have an equation which satisfies (7.1), and be-
cause a, and 2, are relatively prime, it generates all possible

solutions to (7.1).

The solution must satisfy (7.1), and x, can be expressed

in the form

Xy = k * 85 + T {(7.3)
which gives
S_: a, - (k -152 +r) + 8y * Xy (7.4)

Furthermore, the value of r can be computed from

S - Yq = X = k » a

1 5 *+ r mod a

2
or

r mod a

2y 2

We must satisfy X4 < B, We must also satisfy (7.1} and

{7.2), which implies X, < (S+1)/a1. If x, > (S5+1)/a

1 1 2
< 0, contradieting (7.2). If we let min = min(RE, (S+1)/a1)

then x

then these two conditions reduce to x1 < min. If we now select

the largest allowsble value of Xqr which will generate the

smallest possible value of X either it is & solution, or ne
solution exists. Using equation (7.3), we have

k * a. +r = %, < min

2 1
or
k - 34 <{min - r
or
6/4/79 Chapter VII Page 97

R e P E S N T

HOW SECURE IS THE TRAPDOOR KNAPSACK?
k < {(min - r)/32
80 the largest sllowable value of k will be

k = (min -r- 1)/32

By truncating k to an integer, we obtain an exact solution

to (7.3), and generate a2 value for X,4-
We now compute X5 using the already obtained value of Xeo
and determine if X, < B. If X, < B, we have computed the soclu-

tion. Ctherwise, no sclution exists,

-

To summarize: 1 = a.l . y1 + 82,' Y2

compute r = 5 - ¥4 mod a,
compute min = min{(b, (S+1)/a1)
compute k = (min — r ~ 1)/a2

if k¥ < 0, there is no seclution

truncate k

k - a

compute X4 +r

2
compute X5 (s - a, x1) / a,

if x, < B then x is the solution

otherwise no solution exists

6/U/79 Chapter VII Page 98

HOW SECURE IS THE TRAPDOOR KNAPSACK?

4, What Value of n is Safe?

— e —

It is clear that n = 2 is not safe. At the present Eime.-
although we-do not have a fully tested general algorithm. for
solving problems with n = 3, the author believes that this is
glso nét'safe. It is not clear whether n = 4 is safe, but
small values of n, i.e., less than 10, should certainly be
avolded at the pre=sent time, The guthor wishes to emphasize
that estimates about a "safe" value of n have & large subjec-—
tive component. The only method of establishing that a partic-~
ular selection of parameters for the trapdoor knapsack ean be
relied ;n to provide a high level of security is to have a cer-
tificational sttack on the system by individvals skilled in
cryptanalysis and the particular problem area. Closer investi-
éation of the parameter n in the generalized knapsack seems
Justified before adopting a value for a particular system.
(Certificational attacks should optimally include the creators
of the system as one group. Those interested in ﬁnitiating a
serious certification of the trapdoor lnapsack should contact

the author.)

6/4/79 Chapter VII Page 99

T = e Ly TR

el E I T LS O Y A U e T T
T T T T T T T T e TR S e i e

SRR T

BOW SECURE IS THE TRAPDOOR KNAPSACK?

5. How Many Iterations of the Knapsack is Safe?

Although even the single iteration knapsack has not yet-
been brokén. it is the author's belief that st least two or
three iterations of the (w,m} transformn are needed to produce a
margin of safety. The author would presently feel comfortable
with ten iterations, although, as méntioned before, such "feel-
ings" should be viewed with caution. B8 full certificational
attack by several experts would be preferable. |

Work by the author, by Martin Hellman,. and by Adi Shamir
{unpublished) on the security of the single iteration trapdoor
knapsack indicates that revealing any one of the parameters al-
lows solution of the problem,

Taking the three cases in order, let us assume that in ad-
dition to the public vector 8, our opponent learns g'in 2 sin-
gle iteration trapdoor knapsack. In this case, the following

equations held:

mod m

)
-
L[]

4
1]
]

—

mod m

o
ny
x
1]
o
N -

vwhich in turn implies that

] - 1 - . 1
a, W 8; T a, " " a, mod m

6/4/79 Chapter VII Page 100

T I i L T e e T T T A e ST A e e U TES S~ L R A
o aa LT e et fela s Tl e ey \'_‘."_'-:"_-,- RNt ey

HOW SECURE IS THE TRAPDOOR KNAPSACK?

which together with GCD(w,m} = 1 implies

where k is an unknown integer.

The qssential point of this computation is that 'we can
easlly compute a multiple of m. By repeating this trick a few
times with other numbers from the trapdoor knapsack, we can
compute several different multiples of m. Taking their gcd

will then give us m, whieh can in turn be used to recover W.

-

If 8l]l] we know 1s m, we can 6ftgn recover w using a method

devised by Shamir [42). The basic equations behind this method

are:

a1 * W = ai mod m

oy
n

=

n

t
a5 mod_m

which implies

a1/az al/al mod m

But we can compute a1/a2 mod m, which lets us rewrite the

equation as:

6/4/79 Chapter VII Page 101

==;:;ww'”1

HOW SECURE IS THE TRAPDOOR KNAPSACK?

or again as

aé * known = a mod m

—

Furthermore, we know that a{ and aé are very small com-

pared with m., We therefore seek two numbers satisfying

n1 * known = n2 med m

n,, n, are small

-

and hope that these two numbers are g{ and aé {(Shamir [42] has
the detzils). In many cases, our hopes will—be satisfied. 1In
particular, random function arguments'imply that the solution
will be uvnique if length(a;) + length(aé) < length(m).
Although it.is fairly easy to piek m small enough to feoil this
particular attack, it still indicates that m should be kept
secret to maintain security. Although m might not satisfy the
constraint given, it might still be possible to solve for a;

and aé using a'generalized attzck with the first three elements

of the trapdoor knapsack.

Finally, if W is known, this allows ready computation of
Wl ;. Wt a, and Wl - 25 These nmumbers are all equal
to a multiple of m plus the small numbers (relative to m) a!,
aé and aé. All we need do is compute a number which satisfies

these conditions, and we have recovered m.

Since there are three secret parameters in the single

6/4/79 Chapter VII Page 102

TR P T IOt P NPOITT Rt [yt L] 1o STV) Dot S
e ot e e e e L D R VI R
S, D e vte i N e . 4 wRs Mt T

|

4 - LY T O Rk AR P Bt L e e -
T T T LT T e A G SN SR

L wo e e T b Rrenen 0 A
LY PP T % . - E - T I T A
= wh) b T S e v

HOW SECURE IS THE TRAPDOOR KNAPSACK?

iteration trapdoor knapsack and making any one public destroys
securlty, conservatism diectates using the I1terated trapdoor
knapsack even though all three parameters are secret. Much as -
pfoduct_ ciphers can build a strong encryption funetion by
iterating weak simple ciphers, so the iterated trapdoor knap-

sack builds strength by iterating the {w,m) transform.

6/4/79 Chapter VII Page 103

;a‘

. - - . n T T T T e T T s
e e Rt g e o RS e e T Rl s LD ST L e T T s Ea e -nl-n\'r‘-yl.__J--.,I_!J_:'_E:{I"

HOW SECURE IS5 THE TRAPDOOR KNAPSACK?

6. Conclusion

The purpose of this chapter has been to glve the reader a |
better idea of the security of particulsr trapdoor knapsack
problems. It seems clear at this time that a trapdeor knapsack
with n = 1000, with 100 iterations, and with each number 1n the
a vector SDOOIbits -long should be totzlly secure. FReducing

these numbers to more practical values is essential before the

trapdoor knapsack 1= used in a real system.

6/4/79 Chapter VII Page 10Y

R T R e T e

VIII., AN NP-COMPLETE CONVENTIONAL CIPHER

1. Introduction

It is possible to make a conventional cipher based on the
knapsack problem which is essentially NP-complete, Those
knowledgeable about the theory of NP-completeness might object
to the use of the term "NP-complete® in these cireumstances, so
the qualification "essentially™ has been added. The precise
distinctions are more definitional than substantive and are ex-
plained below.

It appears that the proof technique used here can be gen-

eralized to other ciphers.

-

6/4/79 Chapter VIIT Page 105

u L‘ v

AN NP-COMPLETE CONVENTIONAL CIPHER

2. The Basic Idea

It is possible to create a one way funetion based on the
knapsack problem by defining x to be the input to the function,
S to be the output from the function, and a = Ayv Bny wee an as

the function specification. This allows definition of the

function by

(where * denotes dot product).

VWe can define g stream cipher [#] based on this:

C, = P @ F(x),

and the deciphering process is just:

Pt = Ct @ _F(_)_l_)t

where © represents modulo two addition (exclusive or), X is de-

fined to be the key and P Cpv and F(E)t are all one bit quan-

t!
tities. Ct is the single bit of ciphertext transmitted at time

t: Pt is the single bit of plaintext generated by A at time t;

and F(l)t is the single bit of S needed to encrypt P, at time
t.
6/4/79 Chapter VIII Page 106

AN NP-COMPLETE CONVENTIONAL CIPBER

The advantage of this definition is that the key, x, 1s
the argument of a one wsy function, and shguld therefore be
difficult to determine. |

To be ‘Useful. it must be possible to send indefinite
amounts of plaintext: P must be infinite. This implies & must
be infiniFe. This in turn implles that the a; must be infin-
ite. (Notice that it does not imply x is infinite.) Infinite
ai's are trivial: they need only be generated as iﬁdefinite
streams, least significant bit first, For each index 1 in
{1,2; «e:. n}, A will transmit a

i,1° ai,2' . ai,t e At

time t, A will tranamit n + 1 bltSF a1't, a2,t' a3‘t e an,t'

and Ct'

A uses key x to select a3 subset of the a;. A adds up the
subset of the a; to compute the sum, 5. B knows X, hence B can
aléo compute S. (Everyone knows a, which is public knowledge.)

Because the a; are infinite in length, S will also be in-
finite in length., As the a; are transmitted, least significént
bit first, it will become possiblie for B to compute 3, also
least significant bit first. That is, S will be a bit stream,
computable from the n bit streams »a A5y ees @p, and the key

1"
X.

6/4/79 Chapter VIII Page 107

AN NP-COMPLETE CONVENTICNAL CIPHER

This is illustrated in figure 1.

+vae 01000101101 1101

o
1]
.

[]

.

*
—_
[y)

1101100111101

2
33 S e.e. 10101017117 001000
8, % coun 0010011101000 11
S = ,... 010100101017 1001
P =....1717110000117T1711000

Figure 1

E cannot learn x wiﬁhout solving the knapsack problem but
it seems conceivable that F might be able to deduce some por-
tion of S without ever knowing X. 1In the following paragraphs,
this is shown to be impossible.

If we assume E attacks this cipher under a known plaintext
attack, then E knouws St for t < the present time. This is be-

cause

6/4/79 Chapter VIII Page 108

T R P a:ﬁ:¢aﬁ‘q;j'¥;;§;§;;§§§§g§§§$¢:

AN NP-COMPLETE CONVENTIONAL-CIPHER

St = Pt 7] Ct

In spite of this, E will not be able to compute S, for amy t >
the preseny time, even givgn the full values of the ay {which
extend indefinltely inte the future) without also solving for
x, and thus solving the lmapsack problem. This can be proven
by contradiction.

| Assume E can predict St for some t > the present time and

for any value of the‘ai. To determine if xi is a Dorat, E

makes two predictions. E first prediects St' and then makes

e
-

another prediction St after complementing the single bit, I

If gt ¥ St' then Xy must be a 1, otherwise it must be a2 0.

This proves that solving this ciphér for even one bit of
unknown plaintext allows E to recover one of the X Repeatiﬁg
this n times allows recovery of the x vector, thus solving the
knapsack problem.

Why is this cipher only PMessentially” NP—compietg? In
essence, the question is the distinetion between the following
two problems:

Find x, given that we know it exists,

Determine whether or not x exists.

The latter is the knapsack problem, and is NP-complete.
The former is not quite the knépsack problem, and I have been
calling it “essentially“-NP—complete.

From a cryptographer's point of view there is not much

difference between these two problems. If an algorithm exists

6/4/79 " Chapter VIYI Page 109

AN NP-COMPLETE CONVENTIONAL CIPHER

that will find x in time T(n), then we can determine whether or
not x exists by running the algorithm for time T(n) and noting
whether 1t produces the correct x at the end of that time. If-
it doeé produce.the correct'l, then x exists. 1If it Hid not
find any x in that time, no x exists.

It can be argued that this "proof" is inadequate’ because
we have not taken into account the time required te compute T
itgelf. It is not the purpose of this chapter to provide air-
tight theoretical definitions, simply to point out that such

theoretical considerations exist, but do not appear to be im-

-

portant for cryptographic applications.

6/4/79 Chapter VIII Page 110

S e e R S O o e R e
AN NP-COMPLETE CONVENTIONAL CIPHER

3. Conclusion

A conventional cipher which is essentially NP-complete was
given. This cipher, based on the knapsack problem, is the

first with this property known to the author.

674779 Chapter VIII Page 111

IX. PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

1. Introduction

This chapter examines the ways in which public key systems

can be used and the specisl strengths they offer, by giving 2

series of example protocols. Beyond providing recipes for

solving some specific problems, these examples are intended to

improve the reader‘s ability to judge other protocqls and, when
faced with new-préﬁlems, to synthesize new protocols.

' The reader is assumed to be familiar with the general

ideas behind public key cryptosystems, as described in [61],

[#].

For many of the following examples, we shall need the ser-
vices of twe communicants, cslled A and B, and an opponent E,.
A and B will attempt to =end secret messages and sign coh-
tracts, while E will attempt to disco;er the keys, learn the
secrets, and forge contracts. BSometimes, A will attempt to
evade & contract he signed with B, or B will attempt to forge
A's signature to a new cqntract.

A and B will need to apply one way functions to various
arguments of various sizes, so we define the one way function F

with the properties that:

6/U/79 : Chapter IX Page 112

H T T T T T T T R et P et IR Sk it St
T I g I T T T Tt e |.\|”.. oy v:.__;.n..fp‘l..:\; T_’ﬁ, .ﬂ.'_'.,l_._f.:.f,

PROTQCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

1Y F can be applied to any argument of any size, F ap-
plied to more than one argument is defined to be the

same as F applied to the concatenation of the argu- -

ments.

2) F will preoduce an output of fixed size (perhaps 100

bits)
3) "Given F and x it is easy to compute F(x).

4y Given F and F{x) it must be impossible to determine

x.

5) Given F and x, it must be impossible to determine x'

Z % such that F{x) = F(x'}.

For 2 more complete discussion of one way functions, see [71],

{38], [19] and chapter II.

6/u/79 Chapter IX Page 112

P SRR g

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

2. Centralized Key Distribution

Centra}ized key distribution using conventional encryption
functlons was the only reasonable method of‘handling key dis-
tributioﬁ_in a multi-user enviromment before the discovery of
public key distribution methods. Only conventionzl enecryption
functions need be used, which presently offers a performance
advantage. (The currently known public key systems are less
efficlent than conventicnal cryptographic systems. Whether or
not this will congiéue is not now kqown. Discovery of new pub-
lic key systems seems almost inevitable, and discevery of more
efficient ones probable,)

In centralized key distribution, B, B, and all other sys-
tem users somehow deposit a conventional éryptographic key with

a central key distribution center. Call X's key k and let

X
C(key,plaintext) be the ciphertext resulting from the conven-
tional encryption funétion. If A wishes to communicate with B,

then A picks ‘a random key k' and ;omputes y = C(kA.<k‘."send
this key to B">) and sends it to the center along with his
name, The center computes C—1(kﬂ.y) = <k',"send this key to
B"> and then computes z = C(kB,<k',“this key is froﬁ A">) and
sends this to B. B computes C_1(kB.z) = <k',"this key is from
A™> and uses k' in further encrypted communications with A.

This protoecol is simple and requires only conventional en-

eryption functions. Needham and Schroeder [25] and Popek and

6/4/79 Chapter IX Page 114

PROTQCCOLS FOR PUBLIC KEY CRYPTOSYSTEME

Kline [27] have defended its use.

The major vulnerability of this protocol is to both cen-
tralized loss of security and centralized loss of function.
A1l of the eggs are in a central basket. Theft of the central
keys, or bribery of personnel at the central éite will comprom-
ise all users of the system. Similarly, destruction of the
central keys destroys the key distribution mechénism for all
users. In addition, even though A and B can comﬁunicate with
each other, if either of them is unable to communicate with the
key distribution cggper they will not be able to establish a
secure key. In contrast, publie key-distribution will be seen
" to continue to function when only two users are left, and only
the single communication path between them is functional. Pub-
lic key systems are much more robust.

The security and reliability of centralized key distribu-
tion can be increased by using two or more centers, each with
its own keys [6]; Destruction or compromise of a single center
will not affect the other center. I users always use several
keys =-one from each center—~ both to enerypt and decrypt mes-
sages, then compromise of a single key (orla single center) bas
no effect on user security. Only if all centers are comprom-
ised is the users' security compromised. In general, any
number of centers can be established; although practical con-
slderations will usually dictate a small number, e.g., two to
five.

A system with multiple centers forces each user to estab-

6/4/79 Chapter IX Page 115

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEME

lish a key with each center., This inecreases cost, but also in-

creases security. There are two ways of modeling this increase

in security. In the first, we argue thst the prebability of
compromising one center is p, so the probability of compromis-

ing k centers is pk. If p is reasonably small, this model
predicts & rapid and dramatie Iincrease in security as the
number of centers is increased. 1In the second model we argue
that if the cost of compromising ohe eenter is d dollars, then

the cost of compromiszing k centers is only k+d dollars. This
model predicts only a small increase in secﬁrity as new centers

are added. The truth probably lies somewhere in between.

The centralized key distribution protocol does not fully
solve the key distribution problem. Some sort of key distribu-
tion method must be used between each user X and the center to
establish each kX' This problem is nontrivial because no elec-
tronie communications can be used for the transmission of kX‘
and inexpensive physical methods, e.g., registered mail, offer
only moderate security. The use of couriers is reasonably
secure, althougﬁ more expensive. Some implementations of pub-
lic key distribution protocols do not require a secure channel
for Fransmitting individual keys, rather they only require auv-
thentication of one (system) key or the root node in a tree au-
thentication system {see sections 5 and 6},

Centralized key distribution 1s more vulnerable to bkoth
loss of security and loss of function than well designed public

key distribution systems, At the present time, it does provide

6/4/79 Chapter IX Page 116

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

improved performance because conventional encryption functions
are more'efficient {faster or require less memory) than public
key functions. In addition, certified conventional encryption’
fpnetions are widely availsble, but this is not true of public

key systems. The .latter two situvations can be expected to

»

change,

6/4/79 Chapter IX Page 117

it

A

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

3. Simple Public Key Distribution

This i= the most basic application of public key systems

(6], (181, r[20], [21], [31). TIts purpose is to allow A and B

.£to agree on a common key k without any prior secret arrenge-

ments, even though E overhears all messages. While public key
ﬁistribution systems which are not based on public key eryp-
tosystems exist [Gj. [20], we describe the protocol in terms of
a public key cryptosystem, A randomly computes enciphering and
deciphering keys_Eﬁ and DA‘ and sends EA te B (and inadvertent-
1y E). B picks a random key, k, and transmits Eﬂ(k) te A {(and
E}. A computes DA(EA(k)) = k. A then diseerds both E, and Dy,
and B discards EA‘ The key in future communications is k. It
ls used to encrypt all further messsges using a conventional
encryption function., Once A and B have finished talking, they
both discard k. If they lster resume the conversation the pro-
cess is repeated to egree on a new key k', |

This protocol is very simple, and has a great deal to
recommend it. First, no keys and no secret materials exist be-
fore A aqd B start communiczting, and nothing 1s retained after
they have finished, It is impossible for E to compromise any
keys either befo;e the conversation takes place, or after it is
over, for the keys exist only during the conversation, Furth-

ermere, Iif E is passive and does not actively interfere with

the messages being sent, then E will understand nothing and the

6/4/79 Chapter IX Page 118

St AT gy R
SRR

—

Ly

b - , TN

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

conversation will be secure.

The disadvantage of this protocel i1s that E might actively
interfere with the exchange of keys. Worse yet, if E has con--
trol of the channel, he can force @ known k on both A and E.
A1l further meaﬁages encerypted with k can then be read by E.
All E need do is pretend to B that he is A, and pretend to A
that he is B. To do this, E blocks transmission of EA to B,
and substitutes EE' B will compute EE(k) and transmit it to A.
E will bloek this transmission, learn k by computing Dé(EE(k))
= k and then send EA(k) to A. A will compute DA(EA(k)) = k as
usual. E knows k, and both A and B are none the wiser.

In spite of this disadvantage; the protoecol is very usefuol
for two reasons. Passive eavesdropping, by itself, is a major
problem., In hlhe Codebreakers,“' the authoritative 1164 page
history of eryptography by David Kahn [12], the threat was from
passive eavesdropping in the vast majority of cases. Use of a
simple public key distribution protocol provides protection
from this attack, and also provides a peositive guarantee
against lost or stolen cedebooks, bribery or blackmail of code-
clerks, and “practicallcryptanalysis" by theft of keys. For
example, the major vulnerzbility of the U.8. telephone network
today is from techniecally sorhisticzted passive eavesdropping.
The Russians use thelr embassies and consulates in the U.5. to
house microwave receivers which listen teo conversations carried
between telephone company microwave towers [361, [3]. They are

not jamming or altering phone calls; just listening.

6/4/79 Chapter IX Page 119

R R R e 3

PROTOCOLS FOR PUBLIC XEY CRYPTOSYSTEME

Secondly, if the reader has a preference for any other key

distribution protocol which does not provide these blanket

guarantees against lost or stolen keys, then it 15 simple to.

combine the readers preferred key distribution protocol with
the simple publiec key distribution protocol to obtain a hybrid
which offers the atrengths of both. The problem of carelessly
lost keys, poor key security, theft of keys, and briberf of
clerks or janitors who have access to the key are not minor, és
histofy shows [12). A blanket guarantee against all passive
attacks is extremely comforting.

When guéraﬁ%;;s of éuthenticity are also required, the
simple public key distribution protocol can be used teogether
with other methods because of the remarkably strong guarantees
it provides againét the passive eavesdrépper. Even though a
"better" method is being used to provide authenticity, its
Security might have been compromiséd by theft of keys, in which
case it is impossible to guarantge authenticity, but the simple

key distribution protocol at least still guarantees secrecy.

6/u/79 ‘ Chapter IX Page 120

N e AT AR R
; D A FAL

PROTOCCLS FOR PUBLIC KEY CRYPTORYSTEMS

4, Authenticated Public Key Distribution

There is a now claséic protocol [6] which provides secure‘
and authentiéated communications between & and B: A and B gen-
erate FA and EB and make them public, whlle keeping DA and DB
secret. Tﬁe public enciphefing keys of all users are entered
iﬁ a'public file, allowing easy and authenticated access to Ex
for any user, X. Ex can be authenticated upon entry in the

file by i making a perscnal appearance.

If A and R wish to agree on a common key k, then

1) A looks up Eg in the publie file.
2) A generates k1 randomly and transmits EB(k1) to B,
3) B looks up E, in the publie file.

k) P generates k2 randomly and transmits EA(kz) to A,

5} A computes k = <k1.k2>. where k2 DA(EA(kz})‘

6) B computes k <k1.k2>, where k1

L]
u

DB(EB(k1}).

At the end of this prdtocol, A and B have agreed on a com-
mon key, k, which is both-éecret and authenticated. & is as-
sured he is talking to B, fﬁr only B can decipher EB(k1). while
B is assured he 1s talking to A because only A can decipher
EA(R2).

This protocol suffers from two weaknesses, First, entries

in the public file might be altered. E might create a false

6/4/79 Chapter IX Page 121

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEME

entry in A's public file which read:

P
This false éntry would-let E pretend to A that he was B, to the
disadvantage of both A and P.

False entries in the public file can be dealt with both by
good physical security, or by using new protocols {see sections
5 and 6) for authenticating the entries in the public Tiie._

Second, secret deciphering keys can be lost. If E should
learn Dy, then £ could masquerade as P to A without altering
the public file. Unless additionél precautions are taken, A
and B might never find out about the loss. Note that If DB is
compromised but DA is still secure, then A can no longer be
sure he is talking to B, but he can be sure he is télking

secretly to some (umauthenticated) person claiming to be B.

6/4/779 Chapter IX Page 122

: ‘ S—————————
i R - ' : VT T e AT el

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEME

5. Public Key Distribution wilth Certificates

Kohnfelder [14] suggested that entries in the public file’
can be authenticated by having s Central Authority {(CA) sign

them with DCA' He called such signed entries certificates,

The certificate for A, called CA' is computed by the central

authority as:

CA = DCA((“user AF,EA>)

while similarly CB is computed as:

CB = DCA(<"user B".EB>)

The protocol with certificates is the same as the authen~
ticated protocol, except steps 1 and 3, which_involve looking

up EA and EB' are replaced by the steps of obtaining and check~

ing the certificates for A& and B. The modified protocol is:

1) A obtains P's certificate (either from a public file,
or by requesting it from B} and confirms it by com-
puting

ECA(CB) = "uger P".EB

2) A generates k, randomly and transmits EE(k1) to BE.

2) B obtains A's certificate and confirms it by comput-
ing

- N n
ECA(CA) = "user A",F

A
4) B generates k, randomly and transmits EA(kz) to A.

6/4/79 Chapter IX Page 123

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

5) A computes k = <k1,k2>, where k

6) P computes k = <k1,k2>, where k

> DA(EA(R2))'

] DB(EB(R1)).

This protocol assures A and P that each has the other's
public‘enciphering key, and not the public enciphering key of
some 1mposter..

The security of this protocol rests on the assumptions
that DA' DB' and DCA have not been compromised, that A and B
have correct coples of ECA' and that the central authority has
not issued a baq’pertificate. either deliberately because it
was untrustworthy, or accidentelly because it was t}icked. |

ECA can be published in newspapers and wmagazines, znd sent
ever all available communication channels. Plocking its
correct reception would be very difficult,

Security can be improved by having several "Central Au-
thorities,” each wiﬁh its own secret deciphering key. Each
user would be gliven a certificate from each authority, 211 au-
thenticating the same public enciphering key. Compromise of a
single authority will no longer result in comnpromise of the
system. -

If only a single "Central Authority" exists, and DCA is
compromised, then it is no longer possible to authenticate the
users of the sysﬂem and their public enciphering keys. The
certificates are now worthless because the (unauthorized) per-

son who has learned DCA can produce false certificates at will.

6/4/79 Chapter TX Page 124

BT R LHE igi;n‘_h_.‘;w's,!.;‘,.
- R T

PROTOCOLS FOR PURLIC KEY CRYPTOSYSTEMS

This problem can be greatly reduced by destroying DCA

after certificates for all users have been c¢reated., If DCA no
longer exists, it cannot be compromised; The central authority
would create ECA and DCA' sign ail the certificates, then im-
mediately déstroy DCA' DCA would be vulnerable only during the
short time that it was being used to sign certificates.

While it is now impossible for anyone to falsely add new
users to the system by creating false certificates, it is also
impossib;e to add legitimate users to the system os well. This
is unacceptable. The simplest way of dealing with this brob]em

is for the central authority to issue new certificates with a

-new (different) secret deciphering key. For example, each

month the central authority could create new certificates for

A° The new ECA

would be published, and the new users would be accepted. The

that month's new users using a newly created DC

new DCA would be destroyed after use.

Although this method sharply reduces the risk that DCA
might be compromised, it still leaves open the possibility that
the central suthority might issue bad certificates either by
intent, or because of some trickery during the short period

when new certificates are actually being signed. These possi-

bilities can be effectively eliminated by the next protocol.

6/4/79 - Chapter IX Page 125

. o -] - D R L T o)
. - b R - ".'F"ﬂ?.-‘*, s
. . [-5

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEME

6. Public Key Distribution with Tree Auvthentication

Key distribution with certificates was vulnerable to the
criticism that D, can be compromised, resulting in system wide
loss bf authentication (slthough not necessarily loss of secre-
cy). This problem ecan be soived by using free authentication,
as described in Chapter V.

Again, this-protocol attempts to authenticate entries in
the public file, However, instead of signing each entry in the
public file, this protocol applies a one way hash function, H,
to the entire public file. Even though H is applied to the en-
tire public file, the output of B is only 100 or 200 bits long.
The (small} output of H will be called the root, R, of the pub-
lie file. If all users of the system know R, then all users
can authenticate the correctness of the {(whole) publie file by
computing R = H(public file), Any attempt to introduce changes
into the public file will imply with probability near one that
R # H(sltered public file), an easily detected fact.

This method effectively eliminates the possibiiity of

compromising D because no secret deciphering key exists.

CA
Anyone can compute R = H{public file}, and so confirm that the
copy of the public file that they have is correct. R, (like

E., in the protocol of section 5) can be widely distributed.

CA
Because correct copies of the public file are widely dis-

tributed, it is very easy for a user of the system to discover

6/4/79 Chapter IX Page 126

:

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

that someone else is attempting to masquerade as him. If E has
put the false entry
A.............EE

into the publie file, thgn A will discover this fact when he
looks at his own entry. A cannot be given a specilally "print-
ed" public file with his entry correct because then H(publie
file) would not equal R. If new public files are issued before
they go into use, then all users of the sys£em will have time
to assure that they have been correctly entered into the public
file, Becasuse the public file will be subjected to the harsh
glare of public éé;utiny, and because meking alteratlons in the
public file 1s effectively impossible, a high degree of as-
surance that the public file ié correct can be attained,

While this concept is very comforting, foreing each user
ﬁo keep a complete copy of the public file might not be practi-
cal, Fértunately, it is possible to selectively authenticate
individual entries in the publie file, without having to know
thehwhole public file. This ls done by using "tree authentica-
tion," described in chapter V.

The essence of tree authentication Iis to authenticate the
entire public file by "divide and conquer." If we define Y =
publiec file = Y1, Y2, ces Yn' (so the ith entry in the publie
file 3is denoted Yi' and BR's entry is YB); we can define

B{public file) = H(Y) as:

H(Y) = F(H(first half of Y), R(second half of Y))

6/4/79 Chapter IX Page 127

BN 4 s i

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

Where F is a one way function defined in section 1,

If A wishes to confirm B's publie encipﬁering key, then A
need only know the first half of the publie file, (whiech is
where YB appears) and H(second half of public file) which is
only 100 bits long. A can compute H{public file} knowing only
) this information, and yet A only knows half the entries in the
public file, |

In a similar fashion, A does not reazlly need to know all

of the first half of the publie file, for

H(first half of public file) =
F(H(first quarter of public file),

H(second quarter of public file))

All A needs to know is the first quarter of the public file
(which has YB), and H(second quarter of publie file).

By applying this concept recursively, A can confirm YB in
thé public file knowlng only R, 1032 n intermediate B values,
and YB itself. The information needed to authenticate YB'
given that R has already been gauthenticated, lies along the

path from R to Y This information will be called the authen-

B
tication path.
These definitions are illustrated in figure 1, whieh shows
the authentication path for Y5.
This brief sketch of tree authentication should serve to

convey the idea. For a more detailed discussion the reader is

6/4/79 Chapter IX Page 128

ol

-

4927 Vg | - | |
| A 404 HIVd NOTLYDTLNIHLOY JHL MOHS SITMINZ QITONID
ol
S, A A °A A 'A
@ (J o () @ @ () @,
(X'S'GIHQURLLIHE .l RS SHOX 7 9IH QU S EIHO (T 22 H O (T 1)1

(A'9'€)H O A

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

referred to chapter V.
| Using'tree authentication, user A has an authentieation
path which can be used to authenticate user A's public enci-.
phering kex. provided that R has already been authenticsted.
An Tauthentlicstion path" is a new form of ce}tificate. with ECA
replaced Py ﬁ.
The advantage of tree authentication over certificates is

thaet no secreﬁ deciphering key'D exists, so DC cannot be

A

compromised. It is impossible to create false certificates

CA

after R is computed,

With tree aﬁgientication. it is impessible to have a cen—-
tralized loss of authentication, Sut it is aléo impossible to
add new.ugers without lssuing a new tree, The tree, once com-
puted, 1is fixed and unchanging: Therefore, the public file
(which is just the leaves of the tree) is also fixed and un-
changing. For this reason, it can be carefully and publiely
checked for errors, For the same reason, it is impossible to
update. A new tree must be issued periodically.

In summary; If tree authentication is used to authenticate
each entry in the public file, the protocol for public key dis-

tribution proceeds as follows:

1) A obtains B's entry in the publie file and B's authen-
tication path (either from P or from some convenient
storage device) and confirms their correctness.

2) A generates k., randomly and transmits EB(k1) to B.

1

65/0/79 Chapter IX Page 129

PR AT L ALt o Y B 2 T
e ::ﬂ‘t‘ﬂ?'l‘*ﬁ 0 i
L L

S Y P I -t VT S E 2

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMES

3) B obtains A's entry in the public file and A's authen-
tication path and confirms their correctness.

) B generates k, randomly and transmits EA(kz) to A.

48]

5) A computes k = <kq.k,>, where k, DA(EA(kz))'

6) B computes k = <k1,k2>, where k

1 DBFEé(k1)).‘_
This protocol cén only be compromised if: DA or DB is

compromised, or if R is not correctly known by A or B, or if

there is a felse and misleading entry in the publiec file, The

latter two are easily detectable, If either B or B has the

;) wrong R, they will be unable to coﬁplete the protocol with any
qther legitimate user who has the correct ﬁ. Complete failure
of the protocol is easily detected, and will lead to some sort

of corrective action., Impliecitly, the correct value of R is

agreed on by A and B every time each confirms the correctness
of the other's authenticetion path. The correet value of R is
therefore being constantly transmitted between pairs of users

as they establish keys. . This is in addition to other means of

confirming R, such as publication.

Because the public file 1s both open to public scrutiny
and unalterable, false or misleading entries can be rapidly
detected. In practice, a few users concerned with correctness
can verify that the public file satisfies some simple globsl
properties, i.e., each user name appears once and only once in

the entire publie file: individual users can then verify that

6/0/79 Chapter IX Page 130

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

their own entry is correct, and need not bother examining the
rest of the public file.

The only practical method of combromising either A's or
B's security is to compromise Dﬂ or DB' A user's security is
thus dependent on himself and no one else,

It is still possible for A to elaim to be the rion—-existent
C. Because C does not exlst, he will never object that & 1s
masquerading as him. A can effectively establish pseudonym;.
If it is essential to establish a one to one correspondence
between named USerg of the system and real people, some form of
physieal authentication is necessasry. 1In 'mgny applications
there is no need to kmow that user C is really a pseudonym for
user A, As long as C pays his bills, his real Identity is ir-

relevant., The identifier "C" is relative, not absolute, and

serves simply to tie together a sequence of transactions.

6/4/79 Chapter IX Page 131

R o Al R SR DY

%

PROTOCOLS FCR PUBLIC KEY CRYPTOSYSTEMS

7. Digital Signatures

Diffie and Hellman [6] suggested the use of public key.
cryptosystems to provide digital signatures, and Rivest, Shamir
and Adleman [31] have suggested an attractive implementation,
Signature techniques based on methods other than public key
eryptosystems h;ve been suggested by Lamport and Diffi; [61,
Rabin [29]), and Merkle [19].

DPigital signatures, whether based on conventional eneryp-
tion funetions, on public key cryptosystems} on probabilistic
computations, or on other techniques, share séveral impertant
properties in common. These common properties are best illus-
trated by explaining the generzl concept of a digital signe-
ture. -

The now classic example of a digital signature is that of
a person A who wishes to place a purchase order with his stock
brokef P. A has just received word that the stock will go up
in velue, and wishes tq purchase it within a few hours. A, on
the Riviera, cannot send a written order te B in New York in
time, All that A can duickly send to B 1s informstion, 1.e., =
sequence of bits, but B is concerned that 8 may later disclaim
the order. A must somehow generate a sequence of bits (a digi-
tal signature) which will convince B (and if need be, a judge)
that A authorized the order. It must be easy for P to validate

the digital signature, but impossible for him (or anyone other

6/4/79 Chapter IX Page 132

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

than A) to generate it (to prevent charges that B was dabbling
in the market illegelly with A's money).

The signature must be a function of both the message and-
the signer, for it‘must convince B (and a judge} that the par-
ticular person, A, has signed the particular message, m. There
is basicqlly one situvation whilch the digital signature must
resolve: B claims that A signed a message, and A claims he did
not. If in fact A signed the message, then he is gullty of
disavowal; but if he did not, B is gullty of forgery. To sum-
marize: a digital signatur‘e‘ should be message dependent, signer
dependent, easy Eb; the sender to generate, easy for the user
to validate, but impossible to forge or disavow.

There are digital signature schemes which do not 1nvolve
publie key eryptosystems, and some which involve_elzborate in-
teractions between A and B, as well as the clever use ofbraﬁdom
information [29], but it will be convenient notationally to let
A sign message m by computing the signature, Dﬁ(m). Cheecking =
signature will then be done by checking that m = EA(DA(m)}' If
E,(D,{m)) produces an illegible message (random bits) then the
signature is rejected as invalid. This notation is somewhat
misleading because the actual method of generating and validat-
ing s;gnatures can be very different from thislmodél. This no-
tation 1s retained because it is widely known and because we
will not discuss the differences among different digital signa-
ture methods, only their common properties. The conc}usions

reached in the following paragraphs apply te both public key

6/4/79 Chapter IX Page 132

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

and non-publie key based signature systems.

6/4/79 Chapter IX Page 134

b

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

B. A Simple Digital Signature Protocol

The first digital sigﬁature protocol, proposed in [6],.
proceeded as follows:-

'A and B agree on message m that A is to sign. A computes
DA(m) (wh?re DA is known only to A) and transmits it to P, B
looks up EA in the publie file. B can now check DA(m) by com-
puting EA(DA(m{S and confirming that it equals-m. B retains
DA(m) as proof that A signed message m.

If A later denles having signed message m, P can give

DA(m) to a judge,’who can easily compute EA(DA(E)) = m, proving
that A signed the message. ;

This protocol hss been criticized [32], [27] on .two
grounds.

First, the public file might have been tampered with,
When B looks up EA in the publie file, E might have altered the
public file so that EE,appears next to A's name. B will then
Yeheck™ a signature with the wrong public enciphering key, mak-
ing B's "check" useless. Methods of autﬁenticating the public
file, discussed previously under key distribution protocols,
minimize this problem. -

A second criticism, raised by Saltzer [32] and by Popek
and Kline [27], is thet A can disavow the signed message, ex-
plaining "E has stolen DA' and has posted it in a public place.

Clearly, anyone could have computed DA(m), so it proves noth-

ing." In fact, E did not steal anything; & posted D

, in 3 pub-

6/4/79 Chapter IX Page 135

A

*H

PROTOCOLS FCR PUBLIC KEY CRYPTOSYSTEMS

lic place himself. A can now disavow any message he ever
signed. |

Although this simple protocol is flawed, it should pe com- .
pared with current practlice. At the moment, i1t is possible to

order goods and services simply by giving a valid credit card

.number and nothing else,

Furéher, A cannot disavow a2 signed message without gen-
erating suspicion. Repeated disavowals would be especially
questioned. 1In an actual system, the incidence of disavowal
will be low, which implies that careful investigation of those
cases that do ocBur is possible.

A simple solution to the disavowal problem is to adopt
very good physiczl =ecurity for DA‘ and then refuse to accept
A's claim that DA was compromised, Several factors combine to
allow extraordinarily good-physical security for DA' First,
destruction of DA is merely inconvenient., A& can always gen-—
erate a new D'A gnd E'A‘ If theft of D, is imminent, A ecan
destroy DA' Contracts signed with DA are still valid and EA
still exists to autﬁenticate them, even though DA has been des-
troyed.

Second, only @ single copy of DA need exist. DBecause des-
truction of DA is only inconvenient, backup coples of DA_need
not be kept. DA could be kept in a small strong box or on a
single chip of silicon in a "signet ring" worn by A. Attempts
to open the ring would cause destruction of DA'

To summarize, the simple signature protocol is 2 great im-

6/4/79 Chapter IX Page 136

T AR W R R TS D L
R S PR

© e HE s A e
- ‘-'J"';-‘F-'G'-"'!'-j:' A A i

vy T L T S R T B e o Mg I T R A R

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

provement over the current situation (no signature protoeol),
but it suffers from three problems: the public file that B
checks must be accurate; A might disavow the resulting signa-.
ture, explaining (falsely) that DA was stolen; and DA might ac-
iually be-stolen by E who can then lmpersonate A&,

Authenticating the entries in the public flle was con-
sidered.umder public key distribution protocols.

Physical security of DA is A's responsibility.

Disaveowal is considered further in section 9.

6/4/79 Chapter IX Page 137

PROTCCOLS FCR PUBLIC KEY CRYPTOSYSTEMS

9. Dealing with Disavowal

If it is necessary to assume that DA can be compromiged.
then severai protocols whieh reduce or mitigate the problem of
disavowzl suggest themselves.

One éolutiqn is to have a witness testify to the time of
£he order only. Essentizlly, this reduces the role of the wit-
ness to that of a reliable time stamp. As menticned before, if
a_message was signed prior to the time the key was compromised,
then it must be valid. The witness signs a statement of the
format "The time is now 12:04:23 on the 17th of March, 1979,
and I have bheen presented with the following bit pattern
XXXXXXXXANXNARXXAXXEX " If the witness' signature is still
vali¢, and the witness signed the statement prior to the time
DA was compromised.‘then the witnessed signature must also be
valid. The witness need not physically authenticate A's agree~
ment; the witness does not care where the bit pattern comes
from nor what it means.

If A claims he lost DA yesterday, then a message signed
three months ago and "time stamped" by 2 witness two months ago
is still valid. Only A's recently signed messages are open to
question.

A can still disavow a message signed at 2:00 explaining
that hils sighature was compromised at 1:00 but that he didn't

notice this faect until 3:00, If A's argument +that DA was

6/0/79 Chapter IX Page 138

i

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

compromised and he failed to notice this for two hours is ac-

cepted, then he can disavow a8 signed message., Since the "bene-

fit" of most disavowals (e.g. stock orders) is not realized un- .

til a significent time after the message 1is sent, timé stamping
iz more vaiugble than might first appear.

If there is a witness who is trusted not to disavow his
signaturé. whf not rely on him entirely, and eliminate A's di-
gitall signature completely? The witness' testimony. that &
aggreed to the contract would BE the “signature.“ If the witness
is fully trusted, he need not even use digital signatures. He
could simply refiember the contracts. In the event of dispute,
the witness would simply look up the appropriate contract, and
all parties to the dispute would abide by that version. (Popek
and Kline [27) advocate the use of such methods.)

The primary disadvantage to this alternative is that A
loses control over his signing 2bility. The witness can now
forge A's "signature" on 2 contract, either because the witness
is malicious, or because the wiltness made & mistake. If the
witness' word is accepted as binding, A& would have no recourse,
Even though A swore that he had not seen the eontract, had not
agreed to the contract, and would never have agreed to the con-
tract, if the "slgnature" provided by the withess is to be use-
ful, A's pleas must be ignored. 1In contrast, if the witness
only countersigns A's digital signature, then A is guaranteed
that forgery is impossible so long as DA is secure.

In addition, if A is in San Francisco, B is in New York,

6/4/79 Chapter IX Page 139

o

PROTOCCLS FOR PUBLIC KEY CRYPTOSYSTEMS

and the witness 1s in Philedelphia, then some form of secure
communications between the various sites is required. This
adds additional points of vulnerability to the system.

Finally, if the witness is responsible for many contracts
worth many millions of dollars, it is an attraetive target for

system penetrators and vandals. By contrast, digital signa-
tures are distributed; there is no central site whose destruc-
tien or compromise would invalidate 211 signétures for al1
users.

Disavowal is an inherent property.of any signature tech-
nique, including'ﬁﬁitten signatures, stamps, seals, ete. For
any signature system, the signer caﬁ try to disavow his signa-
ture by creating a fancifuvl but not impessible seenario which
wouid have allowed someone else to have forged the signature.
The essential question is the plausibility of these scenarios.
As their plausibility is reduced; the risk of disavowal is also
reducéd. To be practicel, a signature system must reduce the -
risk of disavowal to a level which is tolerable for the partic-
ular aﬁplication. Complete elimination of all risk does not

appear to be attainable.in practice.

6/4/79 Chapter IX Page 140

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

10. Conelusions

The primary purpose of this chapter has been to 1ncrease'
the readers‘insight into the strengths and weaknesses not only
of the particular protocols describéd. but alse of cryptograph-
ie protocéls in general. Certainly, these are not the only
crypfographic protocols possible. However, these protocols are
valuable tools to the system designer: they illustrate what
can be achieved and provide feasible solutions to some pfoblems

-of recurring interest.

6/4/79 Chapter IX Page 141

X, ON THE SECURITY OF MULTIPLE ENCRYPTION

Diffie and Hellman [5] have argued that the S56-bit key
used in the Federa2l Dsta Encryption Standard (DES) [24] is too
small and that current technology zllows an exhaustive search.

of the 256

keys. Although there is controversy surrounding
this issve [©,15,30,23,40,21, there is almost universal agree-
ment [37,5] that multiple encryption using independent keys can
increase the strength of DES. But, as noted in f5], the in-
crease in security can be far less than might first appear.
This chapter shows that a recently proposed scheme [37) for
multiple encryption suffers from such a weakness.

The simplest zpproach to increasing the key size is to en-
erypt twice, with two independent keys K1 and X2. Letting P be

2 64 bit pleintext, € 2 64 bit cipheriext, and K 2 56 bit key,

the besic DES encryption operation can be represented as
C = 2,(P) (10.7)
znd simple double encrypition is obtained as

C= SK2[SK1(P)] (10.2)

1
While exhaustive search over all 2 12 keys ((K1,K2)

11
pairs) requires 2 2 operations and is clearly infeasible, this

cipher can be broken under a known plaintext attack (where

corresponding pleintext and ciphertext are both known) with 256

56

operations {51, znd 2 words of memory. The complexity, meas-

6/4/79 Chapter X Page 142

ON THE SECURITY OF MULTIPLE ENCRYFTION

ured¢ as time plus memcry is therefore no greater than is needed
to cryptanalyze a single 56 bit key exhaustively. (Though the
cost is somewhat higher since memory is "more expensive" than,
time,) If P 2nd C represent a known plaintext-ciphertext pair,
then the algorithm for accomplishing this [5] enerypts P under
all 256 possible values of K1, decrypts C under 211 256 values
of K2 and looks for a match. For obvious reazsons this is
called a "meet in the middle" attack and is given in detail by
the folleowing elgoritbhm (¥Where n is the number of keys in the

key space. For DES, n = 256):

1.} Tor i = 1 ton Do
a.) Tabielil = <Si(P).i,“encrypt“>
b.) Tablein+il = <S;1(C),i."decrypt“>
2.) Sort the tzble on the first field.
3.) Search the table for adjacent entries of the form
<velue,g1,“encrypt">
<value.§2."decrypt">
and test to see if §1 and £2 are the correct keys by
encrypting further plaintext-eciphertext pairs. Based
cn unicity distance arguments [30,35], there will be
gbout 2ua "false glarms" for E1 and ﬁz if a2 single
pleintext-ciphertext pair is used. Testing these
56

tzkes less than 2 operations and therefore contri~

butes an unimportant overhead to the computstion.

6/4/79 Chapter X Page 143

OM THE SECURITY QF MULTIPLE ENCRYPTICHN

While the zlgorithm given runs in time n log n, it could
be rewritten using hash tables to run in essentially linear
time, In any event, the present analysis will neglect loga-.
rithmic factors.

The use of double encryption provides some increzse in

security because the algorithm for cryptanzlysis reguires 256

words of memory, as well as 256 operations., The cost of &
machine to perform 256 opéergtions in approximately 2 day has
been estimated by Diffie and Hellman [5] to be about 20 million
56

dollars. The cast of 2 bli-bit words of memory on 6250 epi
reels of megnetic tzpe, assuming 2800 foot reels thet cost $15
dollars each, is about 60 billion dollars,

Wnile the ceost of implementing this sezrer is high enough
to discourzge its use today, the denger of chezaper technology
or shorteuvis [2] in the future prompted Diffie and Heliman to
suggest triple encryption with three independent keys K1, K2
and K2. A generelized meet in the middle attack would then re-
quire 2112 operztions and be well beyond the foreseeable tech-
nology for at least 50 years, and possibly forever,

At the 197F Nationzl Computer Conference, Tuchmen [37]
proposed 2 triple encryption method which uses only two keys K1
and K2. The pleintext is encrypted with K1, decrypted with K2,
then agzin encrypted with K1 sc that:

1

K2[SK1(P)]] (10.3)

9]

= SK1{S

6/4/79 Chapter X Page 144

ON THE SECURITY OF MULTIPLE ENCRYPTION

This method seems to avoid the "meet in the middle" attack
outlined above and is upwardly compatible with a single encryp-
tion by setting K1 = K2 to produce:

=1
€ = SK1{SK1[SK1(P)]} =5 1(P) (10,4)

K

This a2llows users of the new {two key) system to decrypt
datz encrypted by users of the old (single key) system.

Although the encryption technigue (10,2} provides more
security than simple double encryption es in (10.2), it is
shown below that the new method cen be crypteznelyzed using 2
chesen plaintext ettack [6] in about 256 operzticns. We there-
fore recommend thet if triple encryption is used, there be
three independent keys. If compatibility with single encryp-
tion is desired, the operation can be taken to be:

1 -
K2[3K3(P)J} (10.5)

Then wher K' = K2 = K3 = X, C = SK(P). Users could also be

- g
C = S, (8

compatible with Tuchman's suggested two key method by taking K1
= K3.

Althoughk chosen plzintext attacks can sometimes be mounted
on real systems, the following should be viewed 55 a2 "certifi-~
cational attack™ which is only indicative of & weakness. His-
tory, littered with the broken remains of "“unbreakable" ci-
phers, teaches extreme caution in certifying & new one [12], so
that todsy even an indication of weakness is regarded as

dangerous. In many cases, ciphers which have yielded to chosen

65/4/79 Chapter ¥ Page 145

CN THE SECURTTY OF MULTIPLE ENCRYPTICN

plaintext =ttacks have later proven vulnerable to known plain-
text or ciphertext only attacks as well,
We define some useful notztion before describing the

method of eryptanalysis:

C = Enc(P) = Sy, 18 s, (®)11 (10.6)

K2'"K1
M1 = S, (P) (10.7)
M2 = Sy (M1) (10.8)
= Sz (S, (P)) (10.9)
= SEJI(C) (10.10)

M1 and V2 are intermediate values in the computation of C from
P.

We can motivate the method of cryptenzlysis with the fol-
lowing observetions:

If we knew K1 and a (P,C) pair, then it would be possible
to compute the intermediate values M1 and M2 from (10.7) and
(10.7C). This would let us mount a known pleintext atteck on
K2 using (10.€). There are 256 values of K1, so if we could
guickly determine the right K2 once we found the right Ki, then
cryptenelysis would only take 256 operations. Determining K2
using @ known plaintext sttack requires 256 operations, which
is toc long.

The trick is to somehow change the known plzintext attack

on K2 to s chosen pleintext attack (that is, M1 is chosen in

(1C.8); for example, M1 = 0), so we can gquickly solve for K2

6su/mc Chapter X Pzge 146

ON THE SECURITY OF MULTIPLE ENCRYPTION

with 2 tzble lookup. This increases the memory needed to 256

words, the same as is needed by the meet in the middle attack
for simple double encrypticen.

For this attack to work, we must find the value of P such
that M1 = SK1(P) = 0. If we knew the right K1, then we could
easily compute P = 5;1(9) frem{10,.7), and cryptanzlyze the sys-
tem in one step, because we could then reguest Enc(P) = C, (by
the chosen plzintext assumption); compute SE:(C) = M2; and com-
pute K2 in one step from VM2 using the precomputed table.

Since we do not know K1, we repest this process for each

its 256 possible vslues and test any resulting (K1,X2) pairs

Fad

L0 see whicl one is correct. Agein using uniecity distance ar-

g

guments, we expect 21l false alarms, which is small compared

- -1
Beczuse P = SKifg) fron (10.7) and M2 = S,.(0) from (10.8)

the 2lgorithm can proceed as follows:

.Y Fer i = 1tonTlo

b.) Tablel[i} = <;’:2.i."2">
c.y ¥2 = 57 (Enets' (@)
¢.) Tableln+il = (;2 1,111
2.) Sort the table on the first field.
2.) Seazrch the table for adjacent entries of the form
(value.EZ,“2“>

<value K1,"1">

&/4/79 Chapter X Page 147

ON THE SECURITY OF MULTIPLE ENCRYPTION

and test to see if K1 and K2 z2re the correct keys by
checking further plaintext-ciphertext pairs.

Step 3 is guaranteed to find the correct (K1,K2) pair.

E/L/7¢ . Chapter X Page 148

ON THE SECURITY OF MULTIPLE ENCRYPTION

Conclusion

Two methods of multiple encryption have been shown to be
less secure than they first appeared. The weakness in both
cases ceme from an ability to separate the key into two halves
which did not interact. We conclude that all bits of the key
should come into pley repeatedly in z complex fashion as they
do in the 56-~bit DES, and that multiple encryption with zny
cryptographie system is liable te be much less secure than a

syste- designed originally for the longer key.

6/ur7¢ Chapter X Page 149

XI. CONCLUSION

The use of cryptography is growing because of the increas-
ing demand for privecy as reflected in new legislatien, the
need to protect vulnerable electronic funds transfer systems, '
the increasing quantity and value of information sent over
vulnerable communication channels, the dropping price of eaves-—
dropping and analyzing informzstien, and the dropping price of
protecting information via encryption.

Although it is difficult to predict the curves and swerves
of 2 new and rapidly develeoping technology, it appears that
mzny of the techniques described in this thesis will be used in
telecommunication systems that spen the globe to protect the

privacy end integrity of communications of all kinds.

6/L/7C Chapter XI Page 150

XII. BIBLIOGRAPHY

1. A.V. Aho, J.E. Hoperoft and J.D. Ullman, The Design and

Analysis of Computer Algorithms, Reading, Ma.: Addison-Wesley,
1974,

2. D.X. Branstad, J. Gait, and &S. Katzke, Report of the

workshop on eryptography in support of computer security, Na-

tional Bureau of Standards Rep. NBSIR 77-1201, 21-22 Sept.
1976.

3.- R. Davis, Remedies sought to defeat Soviet eavesdropping
on microwave 1ink§; Mierowave Syst., vol. 8, no. €, pp. 17=20,

June 1978.

L, Diffie, W., and Hellman, M.E., Privacy and authentication:

an introduction to eryptography, Proceedings of the IEEE Vol.

67, Wo. 3, Mar. 1979 pp. 397-427.

5. Diffie, W. and Hellman, M. Exhaustive eryptanalysis of

the NBS data -eneryption standard, Computer June 1977, pp. Ti-
Bh.

6. Diffie, W., and Hellman, ¥. New direetions in cryptogre-

phy. IEEE Trans. on Inform. IT-22, 6{(Nov, 1976), 6Ul-65Y4,

7. Evans, A.,, Kantrowitz, W., and Weiss, E. & user authenti-

cation system not requiring secrecy in the computer. Comm. ACM

6/4/79 Chapter XII Page 151

. T —
E N . . N

T WY IR) T R m ATy N
. . T o “Tr-;:—w'ﬁ‘-

BIBLICGRAPHY

17, 8(Aug. 1974), H37-Lu2,

8.- Feistel, H. Cryptography &nd computer privacy. Sci. Am..
228,5 (May 1973), 15-23.

g. Hellman, M. Merkle, R. Schroeppel, R. Washington, L., Dif-
fie, W., Pohlig, S., Schweitzer, P. Results of an initial at-
tempt to cryptanalyze the NBS data encryption standard, Infor-

mation Systems Laboratory SEL 76-042, Sept. 9, 1976,

10. E. Horowitz'énd S. Sahni, Computing partitions with sppli-
cations to the knapsack problem, JACM, Vol 21, No. 2, April

1974, -pp. 277-292.

11. O0.H. Ibarrez and €. E, Kim, Fast approximation algorithms
for the knapsack and sum of subset problems, JACHM Vol. 22, No.
4, October 1975, pp. U463-Y46E&,

12. Kahn, D. The Codebrezkers. Maemillan, New York, 1976.

13. Karp, R. M. Reducibility among combinatorial problems, in

Complexity of Computer Computations, R. E. Miller and J. W.

Thatcher, eds., Plenum Press, New York {(1972), pp. 85-104,

14. Kohnfelder, L.M. Using certificstes for key distribution

in a public-key cryptosystem. Private communication.

6/4/79 Chapter XI1 Page 152

e

L LT e e \--.r'_{‘-'-;3-'!;‘.l;-'}&‘f}ﬁ{'{zﬁﬁ?ﬂﬁgfgfﬂmmp

BIBLIOGRAPHY

15. Kolata, G.B. Computer encryption and the National Securi-

ty Agency. Scilence, Vol. 197, July 29, 1977.

16. E. L, Lawler, Fast approximation algorithms for knapsack
problems, Electronics Research Laboratory, College of Eng. U.C.

Berkeley Memorandum No. UCB/ERL M77/45, 21 June 1977.

17. Lipton, S.M., and Matyas, S.M. Making the digital signa-
ture legal——and safeguarded. Data Communications (Feb., 1978),

41-52.

~

18. McEliece, R.J. A& public-keyheryptosystem based on alge-
braic coding theory. DSN Progress Report, JPL, (Jan, and Feb.

1978), 42-44,

19. Merkle, R. A& certified digital signature, submitfed to

CACM.

20. Merkle, R. BSecure communicastions over insecure channels.

Comm. ACM 21, 4(Apr. 1978), 294-299.-

21. Merkle, R., and Bellman, M. Hiding information and signa-
tures in trapdoor knapsacks., IEEE Trans. on Inform., IT-24,
5(Sept. 1978), 525-530.

22, R. Merkle, Secure communications over insecure channels,

6/4/79 Chapter XII Page 152

BIBLIOGRAPHY

CACM Vol. 4, Mo. 21, 8pril 1978 pp 294-299,

23. Morris, R., Sloane, N.J.A., and Wyner, A.D, Assessment of
the Naticonal Bureau of Standards proposed federal data encryp-

tion standard. Cryptologia, vol. 1, pp. 281-291, July 1977.

24, MNational Bureau of Standards, Federal Information Process-

ing Standards Publication No. U6,

25, R.M. Needham and M.D, Schroeder, Using encryption for au-
thentication in large networks of computers. CACM 21,12 Dec.

1978 pp. 993-999.

26, S.C. Ponlig and M.E. Hellman, An improved algorithm for
computing logarithms over GF(P) and its cryptographic signifi-
cance, IEEE Trans. on Info Theory, vol. IT-24%, pp. 106-111,

Jan. 1978.

27. G.J. Popek and C.5. Kline, Encryption protocols, public
key algorithms, and digital signatures in computer networks; in

Foundztions of Secure Computation, pp. 133-153.

28. George BE. Purdy, A high security log-in procedure, Comm.

of the ACM, Vol, 17 No. 8, pp. BH2-UUS5, Aug. 1974,

6/4/79 Chapter XII Page 154

et I

T e S T
- T

BIBLTOGRAPHY

29. Rabin, M.0., Digltalized signatures, in Foundations of

Secure Computation, ed. Demillo, R.A., et. al. pp. 155-166,
30. Hellman, M.E. An extension of the Shannon theory approach

to eryptography, IEEE Trans, Inform. Theory VYol. IT-23, May

1977 pp. 2B9-294.

31. Rivest, R.lL., Shamir, A., and Adleman, L. A method for ob-
taining digital signatures and public-key eryptosystems. Comm,
ACM 21, 2(Feb. #978), 120-126.

32. J. Saltzer, On Digital Signatures, private communicstion.
33. R. Schroeppel, unpublished work.

34, Senate Select Committee on Intelligence, Invelvement of
the NBSA in the development of the data encryptlion standard.

News release, &pril i2, 1978.

35. Shannon, C.E. Communieation théory of secrecy systems.

Bell Sys. Tech. Jour. 28 (1949) 654-715,

36. J. Squires, Russ monitor of U.S. phones, Chicago Tribune

pp. 123, June 25, 1975.

6/4/79 Chapter XII Page 155

-:'l

PIBLIOGRAPHY

37. W.L. Tuchman, Talk presented at the Nat. Computer Conf.,

Anahelm, Ca. June 1978.

38. Wilkes, M.V., Time-Sharing Computer Systems, Elsevier, New

York, 1972;

39. Wynér, A. D. The wire tap channel. Bell Sys. Tech, Jour,

54,8 (Oct. 1975), 1355-1387.

49, E.K. Yasaki, Encryption algorithm: key size is the thing,

Datamation, Vol,-22, No. 3, pp. 164,166, Mar. 1976.

41. Feller, W. An Introduction to Probability Theory and its

Applications, Vol. I, third edition, New York, Wiley 1968, p.

33I

42, Shamir, A. On the cryptocomplexity of knapsack systems,
Symposivm on the Theory of Complexity, Atlanta, Georgia, Apr.
1979.

43, Shamir, A, A fast signature scheme, MIT Lazboratory for

Computer Science Report TM--107 July 1978.

6/U/79 Chapter XII Page 156

R N R A T Ie TS

‘-‘"’F

——————— — —

XIII, ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

/*

General Comments:

The following routines have been written in BC, a
simplified version of C that does indefinite precision
integer arithmetic. BC runs on a PDP=-11 under the Unix
operating system.

BC has a few peculiar conventions as follows:

% The infix mod operator. wim computes w modulo m.

auté A loczl varilable deeclaration.

-+ The ﬁhéry increment-by-one operator. As a
postfix operator, it first returns the value
of a variable, then increments 1lt. As a prefix
operator, it increments a varizble and returns
the incremented value.

-— Same as ++, only it decrements.

1= The relational not-equszl operator. 0!=1 is true,
but 0!=0 is false. -

== The relational equal operator: 0==0 is true,

. The indicated string is printed, ne print or output

statement is needed.

. exp A naked expression is printed. The statement
LI R 1
when i has value 845 will print
i= 845

To prevent unwanted printout of integer values
from function calls, the construct
f=f{z,b,e)

6/4/79 Chapter ¥III Page 157

N e P R T e T
- . R

ROUTINES TQ GENERATE TRAPDOOR KNAPSACKS

ﬁill often appear, where f 1s a dummy variable
which is discerded .

[l Left and right braces cannot appear in comments or
in quotes (a bug) so all comments and quotes use
(and) for array subscripts. _ '

HE The semicolon is optional at the end of a line.

1£(0==0) statement; The statement is executed. This

redundant eonstruct is required because of

bugs in BC.
L
/¥
This file céﬁiains all routines necessary to
generate trapdoor knapsacks, EXCEPT the
routine r(1,h), used to generate @ random number
in the range from 1 (low) to h (high). That
is, r(1,h) is a random number satisfying
1 <r(1,h) <n
The main routine is m:make. Once called, it ealls upon
other routines, as needed, to generate the trapdoor knapsack.
&/
define m(m,n,r,g,b){
auto i,e,t
/* m:make makes the enciphering and deciphering

keys for the iterated pgeneralized kmapsack method.

The input parameters have the following meanings:

m: The size in bits of m{1), the first modulus.

n: The mumber of integers in the generallzed

6/4/79 Chapter XIII Page 158

T et ere e e A ek —
-t oy b :“'7;' T Atz e 'ti -r-:l}m_fﬁf-ﬂw#: 5

ROUTINES TO GENERATE TRAFDOOR KNAPSACKS

trapdoor knapsack.
r: +the repetition count, l.e., how many iterations.
g: The growth rate, in bits/iteration.
b: The bound on the x(i): 0 < x(i) < b.

Print out the arguments: ¥/

ir(1==1) . “_

The arguments m,n,r,g,b to m:make were:

"

n

r

E

b

/* We compare the "natural" growth rate
with the growth rate g. If the naturel growth rate
exceeds the growth rate g, then we assume that the
natural growth rate is desired.

®/
g=2"8
t=(b-1)*n
if{g<t) g=t

/% e determines how many multiples of m{i) can be
added to the a{i) %/
ezg/t-1
ir(0==0) n

6/4/79 Chapter XIII Page 159

R S i RN e O P
h e o oese e

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

The value of e 1s: Mie

/* now we-generate m(1) and w(1) %/
ml1]) = r2™(m-1},2"m)
wit]l = r(1,m[1])

/% Now to make sure ged(w(1).m(1)) =1 ¥/
t = gw11,ml1D)
while(t'=1) { wl1]) = wl11/t; t=g(wi1],m[11}}
if1] = Hwl11,ml1D)

/% now we generate the a' vector
(the value of ¢ is discarded) */
c=e(wl11,ml1],b,n)

/* copy it for safekeeping %/
for(i=1:i<=n;i++) plil=ali]l

" basis generated

/® now to generate the rest of the w and m vectors */
for{(i=2;idz=r;i++) {

mli) = r{g*mli-1],2%g*mli-1])

wli) = r(1,mli])
/% Make sure ged(w(i),m(i))=1 */

t = g(wlil,mlil)

while(t!=1) { wlil=wlil/t; t=g{wlil,m[1]1)}
/% and compute the inverse of w modulom #*/

ili) = 1(wlid,m{1])

1l

}
/% Now we can generate the publiec enciphering vector */

for(i=1;id<=n;i++) for{j=1;j<=r;j++) I

6/4/79 Chapter XITI Page 160

) I R T e A A L LT e et T LTI I e N e 0 el el L 2 I X o) e
IHEEEF__ L N T e R 0 e T m R R
. S

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

al13=2l$3%4[{35l §1+1(0,) %ml 1]
n Markt n

J
}

/¥ Bnd print the public enciphering vector %/

if(0==0) " The publie engiphering vector is:
L} .

p(all,n)

/% print the simple knapsack vector *#*/

if(0==0). n

The simple {secret) knapsack vector 1s:

plpL],n)
if(0==0) " The w vector is:
"
‘ p(wll,r)
' if (0==0) " The m vector is:
p(ml],r)
if{0==0) " The i {inverse of w) vector is:
"
p(ifl,r)
return(0)

]

" just passed m:make

define i(a,b){

6/4/79 Chapter XIII Page 161

ROUTINES TO GENERATE TRAPDOCR KNAPSACKS

auto j,i,m,t

/% This routine computes a inverse mod b */

i=1
j=0
m=b

while(0==0){

t=b/a
J=j-t*i
b=b-t*a
if(b==0)

if{b==0)
t=a/b
izi-t*j
a=a-t¥b

if(a==0)

if{a==0)
! }
}
" just passed
il
define gla,b){
a2uto 1,j,k

if (a'=1) " in i: invert. ged is not 1

return(i)

if (b!=1) "in i: invert. ged is not 1

return(j+m)

itinvert

/% computes the gcd of a and b %/

while(0==0){
a=a%db

if{a==0) return(b)

b=b%a

674779

Chapter XIII Page 162

IR T ,;I'r:}:j!{'.f:;u‘.}';.

ey Y -_{--:'?-“_.r‘:';v 'Jx'._g(.r-'ul-n‘v_?: ATk T T £

ROUTINES TO GENERATE TRAPDOCR KNAPSACKS

if(b==D) return{a)
~ }
} .
"™ Just passed gigcd
1
define e{w,m,b,n){
auto k,j,x,y
/% c:icreate creates the n numberé involved in the simple
generalized kmapsack vector. 0< x{i) < b.
Note that the array a really represents
the a' vector,
Note that summation over-n of (b~1)¥a(i) is bounded by m,
and that the a(i) satisfy a(i) > (b=1) ¥ summstion a(j)
for j<i. ' |
®/
k=m/ b'n -
for{j=1;j¢=n; j++)}{
al3j) = r((b"(§j=1)~1)%¥k+1,b"(j=1)%Kk)
}
return{0)
}

" just passed c:create

n

define p(all,n){

auto i)

/% p:print prints ovt an array */
for{i=17i<=n;i++) ali]

return()

6/4/79 Chapter XIII Page 163

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

}

T just passed p:print

n

/% The calling sequence: global parameters are initialized,
and the main routine, m, is called.

The "?" is an input statement %/

b="7?

-

m{m,n,r,g,b)

6/4/79 Chapter ¥III Page 164

By r e il gDy

B NS :rt;.'i;:.‘lj‘:f;f.',‘!r;;‘c'f._!:;,fg;ﬁf-?"’
XIV, EXAMPLES OF TRAPDOOR KNAPSACKS

1. Introduction

This appendix gives some example trapdoor knapsacks, The
author has retained the secret deciphering keys, and the reader_
1s challenged to break any of them. They are of marginal
strength td encourage attempts to break them. Full documenta-
tidn, including listings of all relevent programs and the en?i—

phering key, are given.

2. Descrigfion'

fhe reader is assumed to be familiar with [6]. Most of
the notation and all of the concepts that follow are desecribed
there.

The program which generates trapdoor kmapsack vectors hes
five input parameters, as well as a source of random integers.
The random numbers are provided by a subroutine. This subrou-
tine, r(l,h), accepts two arguments: a-lower limit and an upper
limit. It returns a raﬁdom integer in the range from the lower
1limit to the upper limit (inclusive).

The five parameters describe:

1) n: The number of integers in the knapsack.

2) b: The range of the x[il. 0 < x[i] < b.

3} r: The number of iteratiomns.

4) g: The “"growth" of the m vector per iteration in bits.

6/4/79 Chapter YIV Page 165

R L Ll PN T e L A O e ki e T

T Y R R N G T
EXAMPLES OF TRAPDOOR KNAPSACKS

(That is, m[i] is about 2B-m[i-11).
5) m: The size of m[1], the first modulus. (Note that m,

as used in thils context, is NOT the same a2s m

_described in [1]. The m vector is the natural

- generalization of m in [11.)

»

The reader can check his understanding of the paremeters
n, b,‘and r by examining the following program segment. If we
let the a' vector be the easy to solve (secret) knapsack vec-
tor, and a be the_publicly known knapsack vector, then the rou-
tine for decbdingfg, the weighted sum of the integers in the »

vector (s = x dot 3a) is:

For j = r downte 1 do s = s*wl[3jJ mod m[jl;
For j = n downto 1 do
Begin
x{ jl=s/a"l jl;
if(x(jI>=db) print(® Error: x[j] larger than b"):
s=s-x[j1*a'[j1;

End

Note that the first For statement converts s from the dif-
Ticult to solve knapsack problem to the easy to solve knapsack

problem. The vectors w and m are just the generalizations of

6/4/79 Chapter XIV Page 166

EXAMPLES OF TRAPDOOR KNAPSACKS

the integers w and m used in the single ilteration knapsack.

The second For statement decodes s into a weighted sum of

the a'l1],

The parameters g and m are used to define the size of the
integers.in the Enapsack problem. In particulqr. m gives the
size in bits of ml1], while g gives the "growth rate", i.e.,
the increase in the size between ml[i] and ml[i+1]. These two
parameters, taken together, define the size of m[il] for all i.

Knapsacks with the following parameters have been gen-
o=

erated:
m n r g b
300 20 6 30 2™10
300 6 2 30 2730
300 20 1 - 2710
550 y 1 - 2“100

6/4/79 Chapter XiV Page 167

EXAMPLES OF TRAPDOOR KNAPSACKS

3. THE PUELIC ENCIPHERING KEYS

The }ollowing section has the output of the tfapdoén knap-
sack generatlng function. The cutput has been edited both for
clarity gnd to delete the secret deciphering keys. The digits
in the ;ecret deciphering keys have been replaced with X's,
-thus clearly showing the size of these numbers but concealing
their exact values,

Numbers which require more than one line are extended us-

ing "\" at the ehd of the line.

6/4/79 Chapter XIV Page 168

EXAMPLES OF TRAPDOOR KNAPSACKS

" The arguments m,n,r,g,b to m:make were:
300

20

1

0

1024

The value of e is: 0O

The publie enciphering vector is:
15129608995554”“5&6518329u80125917370077769374250H2H5849293517\
00T4377597002080765261672847T4
17521932983557645722760284190473882583927059421015819376353932\
5(?90650”1H28006?60782725691
17225937970747338687231551661572161286297722869710199263637080\
78209586559761332794 87750620
91488R6637929010955773940289U698211130838391427430023781525692\
3811073379658376132168379165
942628207942538903204439330718758697956251427745T738U9428509608\
650456231106385706727836631 |
113883846810360953205361241506469191676U7675890919002134429391\
63“950205818“6”32““7173678”82
1716&561ﬂ90371563702262183773738261525“8719086”260252517?98872\
77213395347497006724623499765
B6517801731770532543741885456541883058148324212404982101077399\
8735545819677701380449301433

6/4/79 Chapter X¥IV Page 160

EXAMPLES OF TRAPDOOR KNAPSACKS

11918670102945650340377760767650371523832871383399928255062558\
02514510029525184 748851751894
1018651187191259024 45514802661 12526423081912035430233837583568\

28199528366796096978T4 7582474

88132900511530210932437798840838038423713420792104687140079893\
1596001610428439534682579721
172774912480941142404286391668965378528709166942539076 76788723\
0UO15475567501129775853489561
120853773743181502434242635436062318377999079871140626T70222009\
7566931789576300200428928696 1 |
1””85“3092250136Mﬂ359922631123635652921513059579”50“18353887“6\
69771715T065TB806 775445236680
1888126171107242788522633007391360005614196475UT7S0R106B4B80976\
69208204471355627724461161591 '
188406802047558075311386301 874 18592655100272389883367028267623\
8323731921940674944071511959
53796909860835203432715272539792034763303370601440944 113970140\
6134355179709669756985245364
17508960079759190905452796910562315702874340626629585921387736\
53520312052499979753947352119
7511024251832uozoosoo7179666§7u992867882u337103153621132803523\
834253104532129465889505610

18633047796220983043 158614594316710432541253309650075539934535\
52119983887566281548750010461

The simple (secret) knapsack vector is:

6/4/79 Chapter XIV Page 170

. P - . \ e aee - . L
A e b orew M o Pt T . a o

R e S TR MR

EXAMPLES OF TRAPDOOR KNAPSACKS

XXXXXXXKK XXX XXX XXX N KR XKLXRKKY

P9 09800400 00000800600004080 5008404

XXXX XXX XX XXX XXX XA X XXX XXX X AXAAXX

P90 860000000008600800008088¢0450600469¢94

19 8090$0890880080000900880300800008008084600

P9 8808000000000 0000000000890000600889000.0989444
XXk
§9.080.00009009089000800900000980908¢00860048990000049044

P8 0088000006800 0000008000000000800000006009009044960880

100994988088 0000800080060000880580090008000000008000808808004

XRAXX XXX XXX XXX XX XXX KR KX R XK AKX XA X XXX KKK XXX X XXKKKXXKX
XXXEXEXRRAX KR XXX KR XXX XXX XX AKX XXX XX AXXKRAX KKK XXX RN RAKKR
XX

XXX XXRA XXX XXX XXX XK KR XXX XA XKR AKX XX XX R AKX XK AXXXALXK AR XKKKKN
XXXXX
OOYIIINIITEIOITEIIINIIEI SO 9909006009908 6:59.9.99.609968.094
XXXXXXXX

XXXXXXEXRKXXXX KKK XXX KKK XX XXX KKKXX XXX XK KKK XXX XRKKFXXXXKKKX\
XXXXXXXXXXX
XXXXXXXXXXXXXXXKXXXXRXXXXXXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXAXN
XXXAXXXXXXXXXX |

XXXEXXRA XXX XXX KKK KN XXX XXX KR AKX KR AKX R XXX AKX KA KKK AN KXXNKN
XXXXXXXXXXXXXXXXX

) 96800.08400000600000500000600000¢00800000009000880069008990050

TXXAXXXXTXXXXAXAXAKX

p5.0.000860.0090006085996899006000000400088500500000886804999699604

6/4/79 Chapter XTIV Page 171

T
¥

T S R TN ST RN SR 1
- . T P 3
EXAMPLES OF TRAPDOOR KNAPSACKS

19900 08880000080068000.04
PO ID08 0089095 00006060008980890040098009886000006996688040004N

p2808 090009 398600800804004

_The v vector is:
P 89000 080000009608000000885600000804680000800090088600000800340041

XXXXXXXXXXXXAARKX XXX XXXXKXLIXX

The m vector is:

p4.0300 0880000906806 0000000¢4900000080000000800¢0040050900009.0641

JE0 840 408800000008088908908001

The i {inverse of w) vector is: -
XXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXxXXXXXXXXXKXXXXXXXXXXXXXKX\

XX XXX XXX X XXX XXX XXXXX

6/4/79 Chapter XIV Page 172

O T AR ALY T aer

EXAMPLES OF TRAPDOOR KNAPSACKS

The argumenfs m,n,r,g,b to m:make were:
550 |
. :
.
30
1267650600228229401496703205376

The value of e is: O

The -public enciphering vector is:
665H89216”3195335226H6673Bﬂ77ﬂ3u22995919280“189375188792173517\
98204581021406969103971543806570426505592910710830964580119256\
5T074465022305714593614695666457981294232
1168489860572258631889U226889837168088364682651279852730837157\
59301391908126763856942352126002186€517856578293221676TU672214\
879362987490639634466861916054873239307527
286739119211640023039929270T2837051623067378006874600205947505\
3351659250€5374T132150243490103500906169792 1665118575502 717U 1247\
601708976690831T468TUB005317T8679894UGUBTT
10698579696822998161535367373067222285227832L403890470260459712\
7568353057252715“8132869929132413”900832ﬂ9906702088018736”321&\
62009225444 8548529952897080766929088669071

The simple {secret) knapsasck vector is:
PR 4000485000 000008000008000080000800080008009¢4

PO 8065800908800 999050000800860000995699090805980045889000.0908994

6/4/79 Chapter XIV Page 173

EXAMPLES OF TRAPDOOR KNAPSACKS

p89 003080404044
$ 800400409 0889008808000000000000000000000080000000.998008040646904%

§090090098.00000900080000088380809550080888004

PO 00069000 00000000090600000000000609089989¢006986000400¢800641

xxixxxxxxxxxxxxx\

XAXLXAXXAKXX

The w vector- is: _
PO 8480000800000 0 0800000000088 0000600800808000630483030309494904)
P 9400.669850600608080800086000000906000¢9088008000404045000804.04¢4N

XXXXXXXX XXX A RXKAX KKK XXX LXK XXX XXX XXX KKK

-

The m vector is:
000000090009 099¢0E909 99999 EITIIOPSELLEP 9D 999094.08.060.69698Y

bH9 8809900000 000000090660000800680000899598809090008000996480094)

§9.€0090080990909089988888880909068060000¢04

The i (inverse of w)} vector is:
1909908 8000006008000000000000000809886008080806006000000809684994
p 03800088000 000000088000008000000900000800050088080004080804044

$90.090069999.00000000000005096980589888869 04

6/4/79 Chapter XIV Page 174

e

Y Pk FERN LS e BN
EETNER TR o
-

EXAMPLES OF TRAPDOOR KNAPSACKS

The arguments m.n,r.ﬁ.b to m:make were:
200
6 .
2
- 30
1073741823

The value of e is: D

‘The public enciphering vector is:
13132235906108717292663385023635308161076002659005223324995682\
2575759993650080833925469U610635045146
1252848819573365692846615267688252390018551687632U287298619131\
380586309946524954000856518314444714159
989595365710581666882524213R887127848244200355285T726336045U3631\

4B8601662THATIH60TLTBUS649980TRS53916200

127178246401570249356105744244631115771305946255369054130689551\

725925672696713096799262325240902054193
. 13359484996590370029702383299514807005137667883850037475621696\
0BU206987776300260651262919761676285651
106053506251309520485§7o3219920955u3602297u615ou826u77913773u7\
415113739429281225862963632868189331960

The simple (secret) knapsack vector is:
J9.6466060808400980906000808046508004894¢4

F 88000069 00000008000000000989089000000000884¢

6/4/179 Chapter XIV Page 175

AT !

EXAMPLES OF TRAPDOOR KNAPSACKS

PP 8060080806068 0068000580480000000800808000068004006004

9900000960000 0909009900090909059909899099999490999 90900099664

XX
D000 90000800 0000000000908000080090080900800008800000000080000e
XXXXXKXXXXX

xxxxxkxxxkxxxx\

XKL XXX XA KNKKL

The w vector is:
xxxxxxxxxxxxxxkxxx\
)80969840.00008080860080084844

§$999000000090000800.00808090009089000908080060000000999009950604N

P9 0800890680086 0005090080008880806909.0.04

The m vector is:
P 88494004 800055800090008000009000906809008906800099.600999660694N
XXXXXXXXXXXXXAXXX XXX XXX XXKKXX
P00 0089009400008 000800008000880800080000800000880008490469604)

F09 60080899409 000088980890980968008008884

The 1 (inverse of w) vector is:
1909000088000 884080088000080808900000080040000000890089.9.6.5866604
b 9998006909060 98060808699.890884
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\

$69.0600080000009099900.000000809840908.41

6/U/79 Chapter XIV Page 176

T
. i

EXAMPLES OF TRAPDOOR KNAPSACKS

The arguments m,n,r,g.b to m:make were:
300

20

- 6

30

1024

The value of e is: 52479

The public enciphering vector is:

38715730992554486121272405T707302308900190254362381098248854037\

020390891477T46421823026T78634059272748460321670522654185789046\ -

69317062601758874
45063481141306227089733698047113178780347981683 7563 704871634929\
5“”125“532”"00034”701”1207“8192551”55806”95581H5015813906ﬂ9868\
25526460022708092
ﬂ?37930580292”677Hb555998u91642””270317397?9129707090"05682”03\
7191007046979817110886927908883 16769214 408037435044 18976009529\
4154941724990513
8“1”7”9”179172295”283750317580128987”0””2809371305937121065?06\
BUSTTT510608229142779226296475222046846177115338954155162151 41\
0356416225485422

35547604501 9644943705720102306 1 3062827803372039718656497738549\
70511639432408234B57437) 15904856 1674262986058285691 25571658631\
23689858301771567

2632787400215172319222179486906449775642145079198723931253T3 781\

6/U/79 Chapter XIV Page 177

EXAMPLES OF TRAPDOOR KNAPSACKS

2386?772”539495?76386?320“6?2”88027113“869798“11H899215?MH603H\
95311577477033299

U413TH27640458270099948143106280924336347013911498245284 167859\
96607?61771H76233994006770106080475456661015”82830880038635955\

18128u469849886865
82869734506728408857670646187367840701450363010442084975363677\
7692748912781 84271247352301 1375795309791 876135822991 9317923335\
3546850589724563
1443578303305722U4190224067526217500711045449689908289174307459\
?3420352036464“610786593138789169394860932366993676f2785917679\
78264370706748596.-
76219518479176804330617483693702169070570461167513995951771603\
15437650600544017420217970789135573545530048922944206333030398\
0826452486752343
39057907333091628756443751313956792336454871430361636888411903\
66?3u535303u282766uuuu3gau26632u863268312u2551509ﬁ79333u96019u\
96299472093280176 _
3371326993457323212602082674299183665559047215884 86819408284 8€N
25686782702318796654172702957782207550398421357982260463217571\
00121265799943710
69921134220631872208059007887490035018668902960T478507T7141543\
19049543017365942287891801006275473440066300746652591567349236\
BB05266202636565
51196238094281378251652093753017210817286419T46759610742659928\

94616129507515513250496229763102416668715378488669390981450U2€N

56875350837400915

6/4/79 Chapter XIV Page 178

L e
“;T;TQGC%g@'gg
- - 1]

F.

EXAMPLES OF TRAPDOOR KNAPSACKS

4472488362092822209078451956282183T4845906T2358050427322934764\
97494151350493273373028039004676025506580949966000913729267884\
3174933930026094 1

85206344330067581086837330930667257383968038059247R70726076869\

078807278019728562949289721645927677025348383640992751935293 11\
43754226678945 |
389?002516568532229307015H50773DTHN1532Té69HHH11273565“6088301\
190u3923o71iduozz138§257oo39310291367u2851532933&3917226363619\
26355581 688896977

3573501614 1627835378596877196728868785145457355564 120606595359\
’ 9399339”“06622”914HHTH6236939321856”300“5889991927582914§96631\
91555560301521980
23750606001016588281369991225133189815540183312165150355918705\
143607626789753497526703466T48523630301359635481923 17645214176\
-u5809506052808766 '

12811316661 104085102673572902768673537492304808275616527342662\
60692973884603159029815008726045088971127956724223143319836701\
11913499359574243

0

The simple (secret) knapsack vector is:
EXXXEXXX XXX XA XA XXX AX XL XXX
PU609000000600085080000000000090¢4
p6.$00.000088000000000888058008800.¢0044
}09906400000880808800000040088088080904.4

XXXXXXX XX XXX XXX XXX XXX XXX AAXXX

6/4/79 Chepter XIV Page 179

T :;-j“Z.‘-lL'T:’EF‘;'?'&?"

I i it B L

EXAMPLES OF TRAPDOOR KNAPSACKS

£ 8000060000900 0890009.000060060.08000909¢068894

§ 669008000000 800000000030990088000849490088096944
XXXXXXXXXXXxXxXXXXX*XXXXXXXX*XXXXXXXXXXXXXXXXXXXXX*X

b 000008 800006086800800000800000008008600060908086006401
XXXXKXXXXXXX*XXXXXXxXXXXXKXXXXXXXXXXXKKXXXXXXXXXXKXKXXXXXX

FH0 0000400000090 09600.6008000966099000000968060860698.096600¢6064694
PEISOIISS 9000000089999 0000009008599 090599998969 99099 048

XX

PO85099090609.000000000908089.000900698000060909980046996689.69.¢04)
XXXXX
PS04 40000000000080 08880000 000898.00.0000800800008¢080006¢408800064)

XXAEXAXAX

b 499089 080900006000009000000000800000000988996.0090808¢06900604Y

TAXXXXIXXXX

E9.009.08900 0840008000 000000980080009808000908¢989000889¢9.0969804

XXXXAXAXXXXXKY

JO00400600900900.00560908800600058060999680000889069998640008¢84

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXiXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKKXXXXXX\

) 89699080809 6808000 6
P89 0000900909 8800000080060009080¢.0080099000908008050808068000641

} 440808006 0040908000.004 1

P9 $$990 80890000030 080000906009609080990090660606050989000880048

XXXRXXXAXXXXXAXRLAAAAXLKAX

The w vector is:

6/U/79 Chapter XIV Page 180

sl

EXAMPLES OF TRAPDOCR KNAPSACKS

300080006 0080000808 000488600000 0808000000000890004080889004490944)

XXX XXX XXX XXX XX XXX XXX XX _

§ 08 00000908008880096.09000600000080890088098008889660080809.49964N
XXXXXIXXXXXXXXXXXXXKXXKXXX*XXKXKXXXXK -
XXXXXXXXXXXfxxxXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXXX\
XXXXXXXxxXXXXXKXxXXXXXXXXXIXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX*XXXXXKXiﬁXXXXXXXXKXXXKXXXXXXXXXXXXKKKXKXXXXKXXXKKKKK\
XXXXXXXiXXXXiKXXXXXXXXXXXXKXKKXXXXXXXXXXXKXXXXXXXXKXXKX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXKXXXXXXKX*X\ -
XXXKKXXXXKKKKKXXXXXKXkKXXXXXXXXXXXXXXXXKXXXXKXXXXXXXXKXXXXXXXX§
XXX -
-XXXXXXXXXKXX\
P 0.8960 000800000080 0000800800000000008890898000000060800009004}

XXXAXXKXXXXX

The m vector is:
§ 5690800080000 0000000900000890050000099080006600800908098099004
§ 94995069000 8000686000860846.94
xxxixxxxxxxx\
XXXXXXXXXXXXXXXXXXKXXXXXiXXXXXXXXXXXXX
XXX XXX X XXX XXX KKK XX XXX XXX XX XXX XXX AL KKK KKK LALAXKLAN
) $.6.90000009060008000000900540000880080099¢909004
P 4008006 0060006880 5.099900080.00060006090000800006909900.0000¢45¢4
P9 99808509000008008890000800008000000009005990990009888841
19098000 066800900000.08066080000000000008000045990890899980804

DI0904080000000098380.0600080600009060008899098080990806969098

6/4/79 Chapter XIV Page 181

R B S A

EXAMPLEE OF TRAPDOOR KNAPSACKS

XXX

p00099300009909000000900908¢08900006080680000606000469009969.089.044

KKK KX XXX XXX XXX KXY X KKK AR A KL X REX AKX KKK XXX X XXX KN XKK KA KKK

XXAXXXXAXXXX

The i (inverse of w) vector is:
)9 900600009060 0809000896009080960608800900000906688.09999990¢84¢4N
XXXKXXXXXXXK*XXXXXXXXXXXXXXX
PO 00400880000 80000800000 888800000006000000000800000000400400041
PR48400000804808049804050505080096049404 |
XxxXXXXXXXXKXXXXXXX*XKXXXXXXXXXXXXXXXXXXXXKXXXXXXXKXXXXXXXXXXX\
XXXKXXKXXXXXXXXX;&XXXXXXXKXXXXXXXXXXXXXXXXXXXX¥
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxkxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\
J 8900050000 08800080004000000080008890800009003000080404004
PO 00800688050 00580000000008800808080088005008000090¢.6905.096¢¢A
XXXXXXXXXXXX2XXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXKXXKXXXXXXX\

XXX

$40 80809 89000090000000090000005000808090800090089880880009695868 4

$ 09840 08690000800000800000909080080880000000006909084609009¢90¢0

TAXIAXKAX

&€/8/79 Chapter XIV Page 182

rf

