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Abstract

Renyi (Bull. Amer. Math. Soc. 71 (6) (1965) 809) suggested a combinatorial group testing
model, in which the size of a testing group was restricted. In this model, Renyi considered the
search of one defective element (signi5cant factor) from the 5nite set of elements (factors). The
corresponding optimal search designs were obtained by Katona (J. Combin. Theory 1 (2) (1966)
174). In the present work, we study Renyi’s search model of several signi5cant factors. This
problem is closely related to the concept of binary superimposed codes, which were introduced
by Kautz and Singleton (IEEE Trans. Inform Theory 10 (4) (1964) 363) and were investigated
by D’yachkov and Rykov (Problems Control Inform. Theory 12 (4) (1983) 229), Erdos et al.
(Israel J. Math. 51 (1–2) (1985) 75), Ruszinko (J. Combin. Theory Ser. A 66 (1994) 302)
and Furedi (J. Combin. Theory Ser. A 73 (1996) 172). Our goal is to prove a lower bound
on the search length and to construct the optimal superimposed codes and search designs. The
preliminary results have been published by D’yachkov and Rykov (Conference on Computer
Science & Engineering Technology, Yerevan, Armenia, September 1997, p. 242). c© 2002
Elsevier Science B.V. All rights reserved.
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1. Notations and de�nitions

Let 16s¡t; 16k¡t; N¿1 be integers and X = ||xi(u)||; i = 1; 2; : : : ; N; u =
1; 2; : : : ; t; be a binary (N × t)-matrix (code) with columns (codewords) x(1);
x(2); : : : ; x(t) and rows x1; x2; : : : ; xN , where x(u) = (x1(u); x2(u); : : : ; xN (u)) and
xi = (xi(1); xi(2); : : : ; xi(t)). Let

w = min
u

N∑
i=1

xi(u); k = max
i

t∑
u=1

xi(u); � = max
u;v

N∑
i=1

xi(u)xi(v)
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be the minimal weight of codewords, the maximal weight of rows and the maximal
dot product of codewords.

We say that the binary column x covers the binary column y if the Boolean sum
x ∨ y= x. The code X is called (Kautz and Singleton, 1964; D’yachkov and Rykov,
1983) a superimposed (s; t)-code if the Boolean sum of any s-subset of columns of X
covers those and only those columns of X which are the terms of the given Boolean
sum. The code X is called (Kautz and Singleton, 1964; D’yachkov and Rykov, 1983)
a superimposed (s; t)-design if all Boolean sums composed of not more than s columns
of X are distinct.

De�nition 1. An (N × t)-matrix X is called a superimposed (s; t; k)-code (design) of
length N , size t, strength s and constraint k if code X is a superimposed (s; t)-code
(design) whose the maximal row weight is equal to k.

The above-mentioned constraint k was introduced by Renyi (1965) and was studied
by Katona (1966) for the search designs.

2. Lower bound

Let �a� denote the least integer ¿a.

Proposition 1. Let t¿k¿s¿2 and N¿1 be integers.

(1) For any superimposed (s − 1; t; k)-code ((s; t; k)-design) X of length N; the fol-
lowing inequality takes place:

N¿
⌈ st
k

⌉
: (1)

(2) If k¿s + 1; st = kN and there exists the optimal superimposed (s − 1; t; k)-code
X of length N = st=k; then
(a) code X is a constant weight code of weight w = s; for any i = 1; 2; : : : ; N; the

weight of row xi is equal to k and the maximal dot product � = 1;
(b) the following inequality is true:

k2 − k(k − 1)
s

6t: (2)

Proof. (1) It is known (D’yachkov and Rykov, 1983) that code X is a superimposed
(s; t; k)-design if and only if X is superimposed (s − 1; t; k)-code and all ( t

s ) Boolean
sums composed of s columns of X are distinct. Hence, we need to prove inequality (1)
for superimposed (s−1; t; k)-codes only. Let s¿2; 16k¡t be 5xed integers. Consider
an arbitrary superimposed (s − 1; t; k)-code X of length N . Let n; 06n6t, be the
number of codewords of X having a weight 6s− 1. From de5nition of superimposed
(s − 1; t)-code it follows (see, Kautz and Singleton, 1964) that n6N and, for each
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codeword of weight 6s − 1, there exists a row in which all the remaining elements,
except for the element of this codeword, are 0’s. We delete these n rows from X
together with n codewords of weight 6s−1. Consider the remaining (N −n)× (t−n)
matrix X ′. Obviously, each column of X ′ has a weight ¿s and each its row contains
6k 1’s. Since k¿s, we have

s(t − n)6k(N − n); ts6kN − n(k − s)6kN: (3)

Statement (1) is proved.
(2) Let k¿s + 1, st = kN and X be the optimal superimposed (s − 1; t; k)-code of

length N = st=k.

• Since k¿s+1, inequality (3) has signs of equalities if and only if X is the constant
weight code of weight w = s and for any i = 1; 2; : : : ; N , the weight of row xi is equal
to k. By contradiction, using the constant weight property w = s one can easily check
that the maximal dot product � = 1.
Statements (2)(a) is proved.

• To prove Statement (2)(b), we apply the well-known Johnson inequality

t

(
w

� + 1

)
6

(
N

� + 1

)
;

which is true for any constant weight code X of length N , size t, weight w and the
maximal dot product �. In our case, � = 1, w = s, tw = kN and N = st=k. This gives

tw(w − 1)6N (N − 1); k(s − 1)6N − 1 =
st
k
− 1; k2(s − 1) + k6st;

k2 − k(k − 1)
s

6t:

Proposition 1 is proved.

Denote by N (s; t; k); (Ñ (s; t; k)) the minimal possible length of superimposed (s; t; k)-
code ((s; t; k)-design). From Proposition 1 it follows:

• if k¿s + 1, then

Ñ (s; t; k)¿N (s − 1; t; k)¿
⌈ st
k

⌉
:

• if k6s, then N (s − 1; t; k) = Ñ (s; t; k) = t.

3. Optimal parameters

Let s¿2 and k¿s + 1 be 5xed integers. Denote by q¿2 an arbitrary inte-
ger. We shall consider the optimal superimposed (s − 1; kq; k)-codes and optimal
superimposed (s; kq; k)-designs of length N = sq whose parameters satisfy (1) with
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the sign of equality. By virtue of (2)

• if q¿k − (k − 1)=s, then there exists a possibility to 5nd the optimal superimposed
(s − 1; kq; k)-code of length N = sq;

• if q¡k − (k − 1)=s, then lower bound (1) is not achieved and the interesting open
problem is how to obtain a new nontrivial lower bound on N (s − 1; t; k) provided
that

k2 − k(k − 1)
s

¿t:

Some constructions of superimposed (2; kq; k)-designs of length N = 2q and superim-
posed (2; kq; k)-codes of length N = 3q were obtained in Kautz and Singleton (1964).
By virtue of Proposition 1, they are optimal. We give here the parameters of these
designs and codes. The following statements are true:

• if k − 1¿2 is a prime power and q = k2 − k + 1, then there exists an superimposed
(2; kq; k)-design of length N = 2q,

• for pair (k = 3; q = 5) and pair (k = 7; q = 25), there exists an superimposed (2; kq; k)-
design of length N = 2q.

• if k¿4 and q = k − 1, or q = k, then there exists an superimposed (2; kq; k)-code of
length N = 3q.
The aim of this paper—to prove Theorems 1–4.

Theorem 1. Let s = 2 and k¿3 be integers. Then

(1) for any integers q¿k¿3 there exists an optimal superimposed (1; kq; k)-code of
length N = 2q, i.e.; N (1; kq; k) = 2q; q¿k;

(2) for any integer q¿2k − 1 there exists an optimal superimposed (2; kq; k)-design
of length N = 2q; i.e.; Ñ (2; kq; k) = 2q; q¿2k − 1.

Theorem 2. Let s¿3; k¿s + 1 be ;xed integers and q = ks−1. Then there exists an
optimal superimposed (s; kq; k)-design X of length N = sq; i.e. Ñ (s; ks; k) = sks−1.

Theorem 3. Let k = 4; 5; : : : ; be a ;xed integer. For any integer q¿k + 1; there ex-
ists an optimal superimposed (2; kq; k)-code of length N = 3q; i.e.; N (2; kq; k) = 3q;
q¿k + 1.

Remark. Let s¿3. For the case of superimposed (s; kq; k)-codes, Theorem 3 is gen-
eralized (the proof is omitted) as follows. Let pi, i = 1; 2; : : : ; I , be arbitrary prime
numbers and ri, i = 1; 2; : : : ; I , be arbitrary integers. If

q = pr1
1 pr2

2 · · ·prI
I ; 36s6min

i
{pri

i } − 1;

then for any k, s + 16k6q + 1, the optimal length N (s; kq; k) = (s + 1)q.

The following theorem supplements Theorem 2 if s = 3 and k = 4.
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Theorem 4. If k = 4 and q¿12; then there exists an optimal superimposed (3; kq; k)-
design of length N = 3q; i.e.;

Ñ (3; 4q; 4) = 3q; q¿12:

To prove Theorems 1–4, we apply concatenated codes using a class of homogeneous
q-nary codes of size t = kq. The description of cascade construction, de5nitions and
properties of homogeneous q-nary codes will be given in Section 4. The proofs of
Theorems 1–4 will be given in Sections 5–8.

The following theorem yields a diLerent family of optimal superimposed (s; t; k)-codes.
It will be proved in Section 9.

Theorem 5. Let s¿1; k¿s + 2 be ;xed integers. Then there exists an (s; t; k)-code
of size t = ( k+s

s+1 ) and length

N =
(s + 1)t

k
=

(s + 1)

(
k + s

s + 1

)

k
=

(
k + s

s

)
;

i.e.; the optimal length

N

(
s;

(
k + s

s + 1

)
; k

)
=

(
k + s

s

)
:

For Theorem 5, the optimal code constructions were invented by Macula (1996).

4. Homogeneous q-nary codes

Let q¿s¿1; k¿2; k6t6kq; J¿2 be integers, Aq = {a1; a2; : : : ; aq} be an arbitrary
q-nary alphabet and B = ||bj(u)||; j = 1; 2; : : : ; J; u = 1; 2; : : : ; t, be an q-nary (bj(u)∈Aq)
(J × t)-matrix (code) with t columns (codewords) and J rows

b(u) = (b1(u); b2(u); : : : ; bJ (u)); u = 1; 2; : : : ; t;

bj = (bj(1); bj(2); : : : ; bj(t)); j = 1; 2; : : : ; J:

Denote the number of a-entries in the jth row bj by nj(a), where a∈Aq; j = 1; 2; : : : ; J .
We suppose that for any j = 1; 2; : : : ; J and any a∈Aq, the value nj(a)6k.

De�nition 2. Let t = kq. Code B is called an (q; k; J )-homogeneous code if for any
j = 1; 2; : : : ; J and any a∈Aq, the number nj(a) = k.

De�nition 3. Code B will be called an s-disjunct if for any codeword b(u) and any
s-subset of codewords {b(u1); b(u2); : : : ; b(us)}, there exists a coordinate j = 1; 2; : : : ; J
for which bj(u) �= bj(ui); i = 1; 2; : : : ; s.
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For two codewords b(u); b(v); u �= v, de5ne the q-nary Hamming distance

D(b(u); b(v)) =
J∑

j=1
�(bj(u); bj(v));

�(a; b) =

{
1 if a �= b;

0 if a = b:

Let D = D(B) = minu �=v D(b(u); b(v))6J be the Hamming distance of code B. By con-
tradiction, one can easily prove the following statement which gives the analog of the
Kautz and Singleton (1964) condition.

Proposition 2. If s(J −D(B))6J − 1; then code B is s-disjunct. In addition; (q; k; s)-
homogeneous code B is (s − 1)-disjunct code if and only if D(B) = s − 1.

Let n6t be a 5xed integer and e= {e1; e2; : : : ; en}; 16e1¡e2¡ · · ·¡en6t be an
arbitrary n-subset of the set [t] = {1; 2; : : : ; t}. For a given code B and any j = 1; 2; : : : ; J ,
denote by Aj(e; B) ⊆ Aq-the set of all pairwise distinct elements of the sequence
bj(e1); bj(e2); : : : ; bj(en). The set Aj(e; B) is called the jth, j = 1; 2; : : : ; J , coordinate
set of subset e ⊆ [t] over code B. For its cardinality |Aj(e; B)|, we have

16|Aj(e; B)|6min{n; q}:

De�nition 4. Let s¿1; n6s; m6s be arbitrary integers. Code B is called an s-
separable code if for any two distinct subsets

e= {e1; e2; : : : ; en}; 16e1¡e2¡ · · ·¡en6t;

e′ = {e′1; e′2; : : : ; e′m}; 16e′1¡e′2¡ · · ·¡e′m6t;

of the set [t], there exists j = 1; 2; : : : ; J , for which the corresponding coordinate sets are
distinct, i.e., Aj(e; B) �= Aj(e′; B). In other words, for an arbitrary n-subset
e= {e1; e2; : : : ; en}; of the set [t], there exists the possibility to identify this n-subset
e= {e1; e2; : : : ; en} (or the corresponding n-subset of codewords {b(e1); b(e2); : : : ; b(en)}
of code B) on the basis of sets:

A1(e; B);A2(e; B); : : : ;AJ (e; B); Aj(e; B) ⊆ Aq:

Remark. In De5nitions 3 and 4, we used the terminology of Du and Hwang (1993).
One can easily prove (by contradiction) the following ordering among these

properties:

s-disjunct ⇒ s-separable ⇒ (s − 1)-disjunct:

De�nition 5. Code B is called an s-hash (Fridman and Komlos, 1984) if for an arbitrary
s-subset

e= {e1; e2; : : : ; es}; 16e1¡e2¡ · · ·¡es6t;
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of the set [t], there exists a coordinate j = 1; 2; : : : ; J , where the cardinality |Aj(e; B)|= s,
i.e., the elements bj(e1); bj(e2); : : : ; bj(es) are all di>erent.

Obviously, the following ordering takes place: s-hash ⇒ (s − 1)-disjunct.

De�nition 6. Code B is called an s-hash&separable if it has both of these properties.

Let q-nary alphabet Aq = [q] = {1; 2; : : : ; q}. To illustrate De5nitions 2–6 and the
proof of Theorem 1, we give two examples of disjunct and separable codes.

Example 1. Let k = q = 2; 3; : : : be 5xed integers. The evident (k; k; 2)-homogeneous
1-disjunct code B of distance D = 1 has the following t = k2 columns (codewords):

B =

(
111 : : : 1 222 : : : 2 : : : kkk : : : k

123 : : : k 123 : : : k : : : 123 : : : k

)
:

Example 2. For k = 3; q = 7, the (7; 3; 2)-homogeneous 2-hash&separable code B of
distance D = 1 has kq = 21 codewords:

B =

(
111 222 333 444 555 666 777

124 235 346 457 156 267 137

)
:

The idea of the following two examples of (q; k; 3)-homogeneous 3-hash&separable
codes will be used to prove Theorem 2.

Example 3. For k = 3; q = 9, the (9; 3; 3)-homogeneous 3-hash&separable code B of
distance D = 2 has kq = 27 columns (codewords):

B =




111 222 333 | 444 555 666 | 777 888 999

123 123 123 | 456 456 456 | 789 789 789

123 456 789 | 123 456 789 | 123 456 789


 :

Code B contains k = 3 groups of codewords. In the 5rst and second rows, we use the
construction idea which could be called an alphabet separating between groups.

Remark. Obviously, 3-separable code B from example 3 is not 3-disjunct code. Hence,
in general, the ordering s-separable ⇒ s-disjunct is not true.

Example 4. For k = 4; q = 16, the (16; 4; 3)-homogeneous 3-hash&separable code B of
distance D = 2 has kq = 64 columns (codewords) which are divided into k = 4 groups:
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• the 5rst 16 codewords take the form

1111 2222 3 3 3 3 4 4 4 4

1234 1234 1 2 3 4 1 2 3 4

1234 5678 9 10 11 12 13 14 15 16;

• the construction of the last 48 codewords of B applies the same method of alphabet
separating:

◦ for j = 1; 2 and u = 16m + l; m = 1; 2; 3; l = 1; 2; : : : ; 16, the element
bj(u) = bj(16m + l) = bj(l) + 4m,

◦ for j = 3 and u = 16m + l; m = 1; 2; 3; l = 1; 2; : : : ; 16, the element
b3(u) = b3(16m + l) = b3(l) = l.

Let q-nary alphabet Aq = [q] = {1; 2; : : : ; q}. For code B, we denote by

XB = (x(1); x(2); : : : ; x(t)); k6t6kq;

a binary Jq × t matrix (code), whose columns (codewords) have the form

x(u) = (x1(u); x2(u); : : : ; xs(u)); u = 1; 2; : : : ; t;

xj(u) = (xj
1(u); xj

2(u); : : : ; xj
q(u)); j = 1; 2; : : : ; J;

xj
l(u) =

{
1 if l = bj(u);

0 if l �= bj(u); l = 1; 2; : : : ; q:

In other words, a symbol b∈ [q] of q-nary matrix B is replaced by the binary q-sequence
in which all elements are 0’s, except for the element with number b. Obviously, each
codeword x(u) of (code) XB contains J 1’s and (Jq − J ) 0’s and each row xi of
code XB contains 6k 1’s. For (q; k; J )-homogeneous code B, each row xi of code XB

contains k 1’s and (kq − k) 0’. In addition, the stated below Proposition 3 follows
easily by De5nitions 2–4 and Propositions 1–2.

Proposition 3. Let q¿k¿s+ 1 and B be a (q; k; s)-homogeneous code. The following
two statements are true:

• If B is a (s − 1)-disjunct code XB; then XB will be the optimal superimposed (s −
1; kq; k)-code of length N = sq.

• If B is a s-separable code; then XB will be the optimal superimposed (s; kq; k)-design
of length N = sq.

Hence, to prove Theorems 1–4, it is suOcient to construct the corresponding (q; k; s)-
homogeneous codes. In particularly, the constructive method of Examples 3 and 4 yields
Theorem 2 for the case s = 3, i.e., Ñ (3; k3; k) = 3k2; k = 4; 5; : : : .
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5. Proof of Theorem 1

Let s = 2; q¿k, q-nary alphabet Aq = [q] = {1; 2; : : : ; q} and B = (b(1); b(2); : : : ; b(kq))
be an arbitrary (q; k; 2)-homogeneous code 1-disjunct code, i.e., B has pairwise distinct
codewords b(u) = (b1(u); b2(u)); u = 1; 2; : : : ; kq. Following Kautz and Singleton (1964),
we introduce the binary characteristic (q × q)-matrix C = ||ci(j)||; i = 1; 2; : : : ; q;
j = 1; 2; : : : ; q, where

ci(j) =

{
1 if there exists codeword b(u) = (i; j);

0 otherwise:

Example 5. For (7; 3; 2)-homogeneous code B of Example 2, the characteristic (7×7)-
matrix is

C =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1




:

Obviously, the 1-disjunct code B is a (q; k; 2)-homogeneous code if and only if the
weight of each row and the weight of each column of C are equal to k. It is not
diOcult to understand that this condition is true for any circulant matrix. The circulant
matrix C is de5ned as follows:

• the 5rst row c1 = (c1(1); c1(2); : : : ; c1(q)) of circulant matrix C is an arbitrary binary
sequence of length q and weight k6q,

• the mth m = 2; 3; : : : ; q row cm = ((cm(1); cm(2); : : : ; cm(q)) of C is the cyclic shift of
the (m − 1)th row, i.e.,

cm(j) =

{
cm−1(q) if j = 1;

cm−1(j − 1) if j = 2; 3; : : : ; q:

The 5rst statement of Theorem 1 is proved.
To prove the second statement of Theorem 1, we apply the evident necessary and

suOcient condition of 2-separable property which is given in Kautz and Singleton
(1964) no two 1’s in C must occupy the same pair of rows and columns as two other
1’s; that is, no row of C can contain a pair of 1’s in the same two positions as
another row.
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It is easy to check that the circulant matrix C of Example 5 satis5es this condition.
Let q¿2k . As the simple generalization, we consider the circulant matrix C whose
5rst row c1 = (c1(1); c1(2); : : : ; c1(q)) is de5ned as follows:

c1(j) =

{
1 if j = 2n−1; n = 1; 2; : : : ; k;

0 otherwise:

Theorem 1 is proved.

6. Proof of Theorem 2

The following Proposition 4 gives the recurrent construction method of (s + 1)-
separable codes with the help of s-separable codes.

Proposition 4. If there exists an (q; k; s)-homogeneous s-separable code B(q; k; s) with
elements from Aq = [q]; then there exists the (kq; k; s+1)-homogeneous (s+1)-separable
code B(kq; k; s + 1) with elements from Akq = [kq].

Proof. Let

B(q; k; s) = ||bs
j(u)||; bs

j(u)∈ [q]; j = 1; 2; : : : ; s; u = 1; 2; : : : ; kq:

be an arbitrary (q; k; s)-homogeneous s-separable code. Consider the following two-step
recurrent construction (cf. Examples 3 and 4) for (kq; k; s + 1)-homogeneous code:

B(kq; k; s + 1) = ||bs+1
j (u)||; bs+1

j (u)∈ [kq]; j = 1; 2; : : : ; s + 1; u = 1; 2; : : : ; k2q:

• The 5rst kq codewords of B(kq; k; s + 1) have the form

bs
1(1) bs

1(2) : : : bs
1(kq)

bs
2(1) bs

2(2) : : : bs
2(kq)

: : : : : : : : : : : :

bs
s(1) bs

s(2) : : : bs
s(kq)

1 2 : : : kq;

i.e., for u = 1; 2; : : : ; kq, the element bs+1
j (u) = bs

j(u), if j = 1; 2; : : : ; s, and bs+1
s+1(u) = u.

• If the number u = kqm + l; m = 1; 2; : : : ; k − 1; l = 1; 2; : : : ; kq, then
◦ for j = 1; 2; : : : ; s, the element bs+1

j (u) = bs+1
j (kqm + l) = bs+1

j (l) + qm,
◦ for j = s + 1, the element bs+1

s+1(u) = bs+1
s+1(kqm + l) = bs+1

s+1(l) = l.

Note that t = k2q codewords of B(kq; k; s+1) (or the set [k2q]) could be divided into
k groups of the equal cardinality kq where the mth group Gm(q; k; s), m = 1; 2; : : : ; k,
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has the form

Gm(q; k; s) =




bs
1(1) + (m − 1)q bs

1(2) + (m − 1)q : : : bs
1(kq) + (m − 1)q

bs
2(1) + (m − 1)q bs

2(2) + (m − 1)q : : : bs
2(kq) + (m − 1)q

: : : : : : : : : : : :

bs
s(1) + (m − 1)q bs

s(2) + (m − 1)q : : : bs
s(kq) + (m − 1)q

1 2 : : : kq




:

Let

A(m)
kq = {(m − 1)kq + 1; (m − 1)kq + 2; : : : ; mkq}; |A(m)

kq |= kq;
k⋃

m=1

A(m)
kq = [k2q]

be the set of numbers of codewords which belong to Gm(q; k; s). Consider the s × kq
matrix Bm(q; k; s) composed of the 5rst s rows of Gm(q; k; s), m = 1; 2; : : : ; k. Obviously,
Bm(q; k; s) is (q; k; s)-homogeneous code. In addition, all elements of Bm(q; k; s) belong
to the alphabet

A(m)
q = {(m − 1)q + 1; (m − 1)q + 2; : : : ; mq}; |A(m)

q |= q;
k⋃

m=1

A(m)
q = [kq];

and, hence, they do not may occur in Bn(q; k; s), if n �= m, n = 1; 2; : : : ; k. On account of
the s-separable property of B(q; k; s), it follows the s-separable property of Bm(q; k; s),
m = 1; 2; : : : ; k.

To prove the (s + 1)-separable property of B(kq; k; s + 1), we consider an arbitrary
(s + 1)-subset of the set [k2q]: e= {e1; e2; : : : ; es+1}, 16e1¡e2¡ · · ·¡es+16k2q. Let

A1(e; B);A2(e; B); : : : ;As(e; B);As+1(e; B)

be the corresponding subsets of the set [kq] and

e=
k∑

m=1
em; em = e

⋂
A(m)

kq :

The above-mentioned property of groups Gm(q; k; s), m = 1; 2; : : : ; k implies that for any
j = 1; 2; : : : ; s, the set Aj(e; B) could be written in the form

Aj(e; B) =
k∑

m=1
Aj(em; B);

where Aj(em; B) ⊆ A(m)
q . Hence, for any 5xed j = 1; 2; : : : ; s, all nonempty sets Aj(em; B),

m = 1; 2; : : : ; k; could be identi5ed on the basis of the set Aj(e; B).
We have two possibilities.

• There exists the unique value m = 1; 2; : : : ; k such that em = e; |em|= s + 1. It fol-
lows that for any j = 1; 2; : : : ; s, the set Aj(em; B) �= ∅ and, for any n �= m, the set
Aj(en; B) = ∅. Hence, one can identify the set e on the basis of the set As+1(e; B).
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• For any m = 1; 2; : : : ; k, the cardinality |em|6s. Accounting the s-separating property
of Bm(q; k; s), the set em could be identi5ed on the basis of s subsets Aj(em; B),
j = 1; 2; : : : ; s. It follows the possibility to identify e=

∑k
m=1 em.

Proposition 4 is proved.

Let an (k; k; 2)-homogeneous 1-separable code B(k; k; 2) be the code from Example 1.
Consider the corresponding (k2; k; 3)-homogeneous code B(k2; k; 3) obtained from
B(k; k; 2) on the basis of Proposition 4. For k = 3; 4, constructions of B(k2; k; 3) are
given in Examples 3 and 4. To prove Theorem 2, it is suOcient to establish the
3-separable property of code B = B(k2; k; 3) for k = 4; 5; : : : .

We shall use symbols which were introduced to prove Proposition 4. Note that
t = k3 codewords of B could be divided (in increasing order) into k groups Gm(k; k; 2),
m = 1; 2; : : : ; k of the equal cardinality k2. Consider the 2 × k2 matrix Bm(k; k; 2) com-
posed of the 5rst 2 rows of Gm(k; k; 2), m = 1; 2; : : : ; k. Obviously, Bm(k; k; 2) is the
(k; k; 2)-homogeneous 1-separable code. In addition, all elements of Bm(k; k; s) belong
to the alphabet

A(m)
k = {(m − 1)k + 1; (m − 1)k + 2; : : : ; mk}; |A(m)

k |= k;
k⋃

m=1

A(m)
k = [k2];

and, hence, they do not may occur in Bn(k; k; 2), if n �= m, n = 1; 2; : : : ; k.
Let e= {e1; e2; e3}, 16e1¡e2¡e36k3 be an arbitrary 5xed 3-subset of the set

[k3] and {b(e1); b(e2); b(e3)} be the corresponding triple of codewords of code B.
To identify the codewords b(ei); i = 1; 2; 3, using the properties of Bm(k; k; 2);
m = 1; 2; : : : ; k, mentioned above, it suOces to analyze the following three cases.

• There are known three numbers 16m1¡m2¡m36k such that the codeword b(ei);
i = 1; 2; 3 belongs to the group Gmi(k; k; 2). In this case, b(ei) could be identi5ed on
the basis of 1-separable property of Bmi(k; k; 2).

• There is known the number m = 1; 2; : : : ; k such that all three codewords b(e1); b(e2);
b(e3) belong to the group Gm(k; k; 2). In this case, the triple {b(e1); b(e2); b(e3)}, can
be identi5ed on the basis of the set A3(e; B) whose cardinality |A3(e; B)|= 3.

• There are known two numbers 16m¡n6k such that (without loss of generality)
codeword b(e1) belongs to the group Gm(k; k; 2) and two other codewords b(e2) and
b(e3) belong to the group Gn(k; k; 2). In this case, we have the following three-step
identi5cation:

◦ the codeword b(e1) = (b1(e1); b2(e1); b3(e1)) is identi5ed on the basis of 1-separable
property of Bm(k; k; 2),

◦ the set {b3(e2); b3(e3)} evidently identi5ed on the basis of symbol b3(e1) and the
set A3(e; B),

◦ codewords b(e2) and b(e3) are identi5ed on the basis of the set {b3(e2); b3(e3)}.
Theorem 2 is proved.
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7. Proof of Theorem 3

Let q¿k + 1; k¿4, and q-nary alphabet Aq = [q] = {1; 2; : : : ; q}. We need to con-
struct (q; k; 3)-homogeneous code B of distance D(B) = 2. Consider the construction
of (q; k; 3)-homogeneous code B = ||bj(u)|| whose rows bj = (bj(1); bj(2); : : : ; bj(kq));
j = 1; 2; 3; are de5ned as follows:

1. for j = 1, the 5rst row b1 = (b(1)
1 ; b(2)

1 ; : : : ; b(q)
1 ); b(m)

1 = (m; m; : : : ; m)︸ ︷︷ ︸
k

; m = 1; 2; : : : ; q;

2. for j = 2, the second row b2 = (b(1)
2 ; b(2)

2 ; : : : ; b(k)
2 ); b(m)

2 = (1; 2; : : : ; q); m = 1; 2; : : : ; k;

3. for j = 3, the third row b3 = (b(1)
3 ; b(2)

3 ; : : : ; b(k)
3 ); where the subsequence b(m)

3 of length
q is the (m − 1)-step cyclic shift of the sequence (1; 2; : : : ; q):

b(m)
3 =

{
(1; 2; : : : ; q) if m = 1;

m; m + 1; : : : ; q − 1; q; 1; 2; : : : ; m − 1 if m = 2; 3; : : : ; k:

Obviously, this construction guarantees the distance D(B) = 2. From Proposition 2 it
follows 2-disjunct property of B.

Theorem 3 is proved.

Example 6. As an illustration, we yield the (6; 4; 3)-homogeneous 2-disjunct code B
with kq = 24 codewords

B =




111122 223333 444455 556666

123456 123456 123456 123456

123456 234561 345612 456123


 :

Remark. For 2-disjunct code B of Example 6, it is easy to check the following
properties:

• The 3-subsets e= {2; 8; 13} and e′ = {2; 7; 13} of the set [24] have the same co-
ordinate sets, namely: A1 = {1; 2; 4}, A2 = {1; 2} and A3 = {2; 3}. From this it
follows that the code B is not 3-separable code, i.e., in general, the ordering
(s − 1)-disjunct ⇒ s-separable is not true.

• The 3-subset e= {1; 2; 7} of the set [24] has the equal coordinate sets A1 = A2 =
A3 = {1; 2} of cardinality 2. Hence, the code B is not 3-hash code, i.e., in general,
the ordering (s − 1)-disjunct ⇒ s-hash is not true.



294 A.G. D’yachkov, V.V. Rykov / J. Statistical Planning and Inference 100 (2002) 281–302

8. On (q; k; 3)-homogeneous 3-separable and 3-hash codes: Proof of Theorem 4

8.1. Characteristic matrices

Consider an arbitrary (q; k; 3)-homogeneous 2-disjunct code B. From Proposition 2 it
follows that we can introduce characteristic (q× q)-matrix C = ||ci(j)||; i = 1; 2; : : : ; q;
j = 1; 2; : : : ; q; with elements from alphabet Aq+1 = {∗; [q]}= {∗; 1; 2; : : : ; q}, where

ci(j) =

{
a if there exists codeword b(u) = (a; i; j);

∗ otherwise:

We shall say that code B is identi;ed by the (characteristic) matrix C which will be
called C(q; k)-matrix.

Example 7. For k = 4; q = 6, the (6; 4; 3)-homogeneous 2-disjunct code B of Example
6 is identi5ed by C(q; k)-matrix

C =




1 2 4 5 ∗ ∗
∗ 1 2 4 5 ∗
∗ ∗ 1 3 4 6

6 ∗ ∗ 1 3 4

5 6 ∗ ∗ 2 3

3 5 6 ∗ ∗ 2




:

The evident characterization of C(q; k)-matrix is given by Proposition 5.

Proposition 5. The matrix C is C(q; k)-matrix if and only if C has the following
properties:

• for any a∈ [q]; the number of a-entries in C is equal to k;
• for any row (column) of C; the number of ∗-entries in the row (column) is equal
to q − k;

• for any a∈ [q] and any row (column) of C; the number of a-entries in the row
(column) does not exceed 1.

Remark. If q = k, then C(q; q)-matrix is called the Latin square.

Characteristic matrix C of hash, separable and hash&separable code will be called
CH(q; k)-matrix, CS(q; k)-matrix and CHS(q; k)-matrix.

One can easily check the following characterization of CH(q; k)-matrix.

Proposition 6. Matrix C is CH(q; k)-matrix if and only if C has the properties of
Proposition 5 and the following two equivalent conditions take place:
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• If for i �= m and j �= n; the element ci(j) = cm(n) = a �= ∗; then ci(n) = cm(j) = ∗.
• If for i �= m; j �= n and a �= b; code B contains codewords (a; i; j) and (a; m; n); then

B does not contain the word (b; m; j).

The evident characterization of CHS(q; k)-matrix is given by Proposition 7.

Proposition 7. Let a; b and c be arbitrary pairwise distinct elements of [q]. Matrix
C is CHS(q; k)-matrix if and only if C has properties of Propositions 5 and 6 and
the following property is true. Matrix C does not contain any (3 × 3)-submatrix of
the form


∗ a c

a ∗ b

c b ∗


 ;




c a ∗
b ∗ a

∗ b c


 ;




∗ c a

a b ∗
c ∗ b


 ;




a ∗ c

∗ a b

b c ∗


 ;




a c ∗
∗ b a

b ∗ c


 ;




c ∗ a

b a ∗
∗ c b


 :

These prohibited matrices are the permutations of the same three columns.

Remark. The characterization of CS(q; k)-matrix has a tedious form and it is omitted
here. Below, we give the examples of CS(q; k)-matrices which are not CHS(q; k)-matrices.

8.2. Examples of hash, separable and hash&separable codes

Let an integer k¿2 be 5xed. How to 5nd the minimal possible integer qk¿k such
that there exists CS(qk ; k)-matrix, CH(qk ; k)-matrix or CHS(qk ; k)-matrix? From Exam-
ples 3 and 4 it follows that one can put qk = k2. For k = 2; 3; 4, the following Exam-
ples 8–10 improve this result and yield CS(qk ; k), CH(qk ; k) and CHS(qk ; k)-matrices
for which qk¡k2. If k = 2; 3; 4 and qk¡q¡k2, then the corresponding characteristic
matrices could be given also.

Example 8. For k = 2, CS(q2; 2)-matrix, CH(q2; 2)-matrix and CHS(q2; 2)-matrix are 1




1 2 ∗
∗ 1 3

3 ∗ 2;


 ;




∗ 3̇ S1

1̇ S2 ∗
S3 ∗ 2̇


 ;




1 ∗ 3 ∗
∗ 1 ∗ 3

4 ∗ 2 ∗
∗ 4 ∗ 2


 :

1 Here and below, for 3-hash codes, we mark the pairs of “bad” triples which break the 3-separable
property.



296 A.G. D’yachkov, V.V. Rykov / J. Statistical Planning and Inference 100 (2002) 281–302

The 5rst matrix (q2 = 3) identi5es the separable (not hash) code. The second ma-
trix (q2 = 3) identi5es the hash (not separable) code. The third matrix (q2 = 4) is the
particular case of Proposition 4.

Example 9. Let k = 3. For hash code q3 = 6 and for hash&separable code q3 = 7. The
corresponding characteristic matrices are




∗ ∗ 1̇ S2 3 ∗
∗ S1 ∗ 5̇ ∗ 3
1 ∗ ∗ ∗ 5 4
∗ 2̇ S5 ∗ ∗ 6
2 ∗ 4 ∗ 6 ∗
3 4 ∗ 6 ∗ ∗




;




∗ ∗ 1 2 3 ∗ ∗
∗ 1 ∗ 5 7 ∗ ∗
1 ∗ ∗ ∗ ∗ 7 3
∗ 2 ∗ ∗ ∗ 5 4
2 ∗ 7 ∗ ∗ ∗ 6
∗ 3 ∗ 4 ∗ 6 ∗
5 ∗ 4 ∗ 6 ∗ ∗




:

Example 10. Let k = 4. For hash codes, q4 = 8 and for hash&separable codes, q4 = 13.
The corresponding characteristic CH(8; 4) and CHS(13; 4)-matrices are




∗ ∗ ∗ 1 ∗ 2̇ 3 S5
∗ ∗ 1 ∗ S2 ∗ 4 6̇
∗ 1 ∗ ∗ 3 4 ∗ 7
1 ∗ ∗ ∗ 5̇ S6 7 ∗
∗ 2 3 4 ∗ ∗ ∗ 8
2 ∗ 5 6 ∗ ∗ 8 ∗
3 5 ∗ 7 ∗ 8 ∗ ∗
4 6 7 ∗ 8 ∗ ∗ ∗




;




∗ ∗ ∗ ∗ ∗ ∗ 4 2 3 ∗ 8 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 7 13 5 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 9 10 ∗ ∗ 1 8
∗ ∗ ∗ ∗ ∗ ∗ 6 12 11 ∗ ∗ 5 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10 11 13 3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 9 12 7 2
1 ∗ ∗ 13 ∗ ∗ ∗ ∗ ∗ 6 ∗ ∗ 4
2 7 9 12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 6 11 10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 5 ∗ ∗ 11 9 13 ∗ ∗ ∗ ∗ ∗ ∗
8 4 ∗ ∗ 10 12 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 4 5 6 7 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 8 ∗ 3 2 1 ∗ ∗ ∗ ∗ ∗ ∗




:
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Open problems. (1) Is it possible to construct a CHS(q; 4)-matrix if q¡13? (2) Is it
possible to construct CHS(q; k)-matrices, if k¿5 and q¡k2?

8.3. Existence of hash and hash&separable codes

The following obvious Proposition 8 can be used to construct the new characteristic
matrices using the known ones.

Proposition 8 (S.M. Ekhanin, 1998). Let v = 1; 2 and there exist CH(qv; k)-matrix

Cv = ||cv
i (j)||; i; j∈ [qv]; cv

i (j)∈{∗; [qv]}:
Let C̃

2
= ||c̃2

i (j)|| be the matrix whose element

c̃2
i (j) =

{
q1 + c2

i (j) if c2
i (j) �= ∗;

∗ otherwise:

Then matrix

C =


C1 ∗

∗ C̃
2




is a CH(q1 + q2; k)-matrix. The similar statement is also true for characteristic ma-
trices of hash&separable codes.

With the help of the computer checking, we constructed the 5nite collection of “non-
regular” CH(q; 4)-matrices, q¿8, and CHS(q; 4)-matrices, q¿13. Taking into account
Proposition 8, we obtain

Proposition 9. 1. If q¿8; then there exists CH(q; 4)-matrix. 2: If q¿13; then there
exists CHS(q; 4)-matrix.

The following statement is a generalization of the hash&separable construction of
Examples 3 and 4.

Proposition 10. If q¿k2; then there exists (q; k; 3)-homogeneous 3-hash code.

Proof. Let k = 2; 3; : : : and q¿k2. Consider the following construction of (q; k; 3)-
homogeneous code B = ||bj(u)|| whose rows

bj = (bj(1); bj(2); : : : ; bj(kq)); j = 1; 2; 3

are de5ned as follows:

1. for j = 1, the 5rst row

b1 = (b(1)
1 ; b(2)

1 ; : : : ; b(q)
1 ); b(m)

1 = (m; m; : : : ; m)︸ ︷︷ ︸
k

; m = 1; 2; : : : ; q;
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2. for j = 2, the second row

b2 = (b(1)
2 ; b(2)

2 ; : : : ; b(k)
2 ); b(m)

2 = (1; 2; : : : ; q); m = 1; 2; : : : ; k;

3. for j = 3, the third row b3 = (b(1)
3 ; b(2)

3 ; : : : ; b(k)
3 ); where the subsequence b(m)

3 ;
m = 1; 2; : : : ; k of length q is the k(m−1)-step cyclic shift of the sequence (1; 2; : : : ; q):

b(m)
3 =




(1; 2; : : : ; q) if m = 1;

(k(m−1)+1; k(m−1)+2; : : : ; q−1; q; 1; 2; : : : ; k(m−1)
if m = 2; 3; : : : ; k:

As an illustration, we yield the (11; 3; 3)-homogeneous code


111 222 333 444 555 666 777 888 999 aaa bbb

123 456 789 ab1 234 567 89a b12 345 678 9ab

123 456 789 ab4 567 89a b12 378 9ab 123 456


 ;

where, for convenience of notations, we put a = 10; b = 11.
If q¿k2, then this construction of (q; k; 3)-homogeneous code B has an evident

property of alphabet separation, which could be formulated as follows. Let the symbol
⊕ denote modulo kq addition and u = 1; 2; : : : ; kq be an arbitrary ;xed integer. Then
q-nary elements of the k-subsequence

b3(u); b3(u ⊕ 1); b3(u ⊕ 2); : : : ; b3(u ⊕ (k − 1))

do not may occur in the k-subsequence

b3(u ⊕ q); b3(u ⊕ (q + 1)); b3(u ⊕ (q + 2)); : : : ; b3(u ⊕ (q + k − 1)):

By virtue of the second condition of Proposition 6, it implies 3-hash property of code
B. Proposition 10 is proved.

Conjecture. The construction of Proposition 10 yields hash&separable codes.

8.4. Product of characteristic matrices

In this section, we consider a construction of homogeneous codes, which makes
possible to obtain the new (more complicated) codes using the known ones.

Let v = 1; 2 and Cv = ||cv
i (j)||, i; j∈ [qv], cv

i (j)∈{∗; [qv]}; be C(qv; kv)-matrix of code
Bv. Denote by

C = C1♦C2 = ||cr(u)||; r; u∈ [q1q2]; cr(u)∈{∗; [q1q2]};
the product of characteristic matrices of code B1 and code B2. Matrix C is de5ned
as follows: for arbitrary i; j∈ [q1] and l; m∈ [q2], put

r = q2(i − 1) + l; u = q2(j − 1) + m;

cr(u) =

{
q2(c1

i (j) − 1) + c2
l (m) if c1

i (j) �= ∗ and c2
l (m) �= ∗;

∗ otherwise:
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Example 11. Let k1 = k2 = 2; q1 = q2 = 3, and

CH(q1; k1) = CH(q2; k2) =




∗ 1 2

1 ∗ 3

2 3 ∗


 :

CH(q1q2; k1k2) = CH(q1; k1)♦CH(q2; k2)

=




∗ ∗ ∗ ∗ 1 2 ∗ 4 5

∗ ∗ ∗ 1 ∗ 3 4 ∗ 6

∗ ∗ ∗ 2 3 ∗ 5 6 ∗
∗ 1 2 ∗ ∗ ∗ ∗ 7 8

1 ∗ 3 ∗ ∗ ∗ 7 ∗ 9

2 3 ∗ ∗ ∗ ∗ 8 9 ∗
∗ 4 5 ∗ 7 8 ∗ ∗ ∗
4 ∗ 6 7 ∗ 9 ∗ ∗ ∗
5 6 ∗ 8 9 ∗ ∗ ∗ ∗




:

Such product of matrices remains the hash property.

Example 12. Let k1 = k2 = 2; q1 = q2 = 3, and

CS(q1; k1) = CS(q2; k2) =




1 2 ∗
∗ 1 3

3 ∗ 2


 :

The product of matrices

C(q1q2; k1k2) = CS(q1; k1)♦CS(q2; k2)

=




1 V2 ∗ W4 5 ∗ ∗ ∗ ∗
∗ W1 3 ∗ V4 6 ∗ ∗ ∗
3 ∗ 2 6 ∗ 5 ∗ ∗ ∗
∗ ∗ ∗ V1 W2 ∗ X7 8̂ ∗
∗ ∗ ∗ ∗ 1 3 ∗ 7 9

∗ ∗ ∗ 3 ∗ 2 9̇ ∗ S8

7 X8 ∗ ∗ ∗ ∗ 4̂ 5 ∗
∗ 7̂ S9 ∗ ∗ ∗ ∗ X4 6̇

9 ∗ 8̇ ∗ ∗ ∗ S6 ∗ 5



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does not remain the separable properties of factors. In the 5gure, we have marked
three pairs of “bad” triples, namely:

{(V1; V2; V4) (W1; W2; W4)}; {( X4; X7; X8) (4̂; 7̂; 8̂)}; {(6̇; 8̇; 9̇) (S6; S8; S9)}:

This example shows the reason why the separable property of the product of two
separable matrices is not true. To guarantee the separable property of the product of two
separable matrices, at least one of two factors should have hash&separable property.
The following proposition takes place.

Proposition 11. (1)The product ofCH(q1; k1)- andCH(q2; k2)-matrices isCH(q1q2; k1k2)-
matrix. (2) The product of CS(q1; k1)- and CHS(q2; k2)-matrices is CS(q1q2; k1k2)-
matrix. In addition; if the product of two separable matrices has the separable
property; then at least one of these factors should have the hash&separable prop-
erty (S.M. Ekhanin, 1998).

To explain the second statement of Proposition 11, we give the following example.

Example 13. Let k1 = k2 = 2; q1 = 3; q2 = 4, and

CS(q1; k1) =




1 2 ∗
∗ 1 3

3 ∗ 2


 ; CHS(q2; k2) =




1 ∗ 3 ∗
∗ 1 ∗ 3

4 ∗ 2 ∗
∗ 4 ∗ ∗


 :

The product CS(q1; k1)♦CHS(q2; k2) has the form


1 ∗ 3 ∗ 5 ∗ 7 ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ 3 ∗ 5 ∗ 7 ∗ ∗ ∗ ∗
4 ∗ 2 ∗ 8 ∗ 6 ∗ ∗ ∗ ∗ ∗
∗ 4 ∗ 2 ∗ 8 ∗ 6 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 ∗ 3 ∗ 9 ∗ 11 ∗
∗ ∗ ∗ ∗ ∗ 1 ∗ 3 ∗ 9 ∗ 11

∗ ∗ ∗ ∗ 4 ∗ 2 ∗ 12 ∗ 10 ∗
∗ ∗ ∗ ∗ ∗ 4 ∗ 2 ∗ 12 ∗ 10

9 ∗ 11 ∗ ∗ ∗ ∗ ∗ 5 ∗ 7 ∗
∗ 9 ∗ 11 ∗ ∗ ∗ ∗ ∗ 5 ∗ 7

12 ∗ 10 ∗ ∗ ∗ ∗ ∗ 8 ∗ 6 ∗
∗ 12 ∗ 10 ∗ ∗ ∗ ∗ ∗ 8 ∗ 6



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which illustrates its separable property. Thechangedorder product CHS(q2; k2)♦CS(q1; k1)
also remains the separable property and has the form



1 2 ∗ ∗ ∗ ∗ 7 8 ∗ ∗ ∗ ∗
∗ 1 3 ∗ ∗ ∗ ∗ 7 9 ∗ ∗ ∗
3 ∗ 2 ∗ ∗ ∗ 9 ∗ 8 ∗ ∗ ∗
∗ ∗ ∗ 1 2 ∗ ∗ ∗ ∗ 7 8 ∗
∗ ∗ ∗ ∗ 1 3 ∗ ∗ ∗ ∗ 7 9

∗ ∗ ∗ 3 ∗ 2 ∗ ∗ ∗ 9 ∗ 8

10 11 ∗ ∗ ∗ ∗ 4 5 ∗ ∗ ∗ ∗
∗ 10 12 ∗ ∗ ∗ ∗ 4 6 ∗ ∗ ∗

12 ∗ 11 ∗ ∗ ∗ 6 ∗ 5 ∗ ∗ ∗
∗ ∗ ∗ 10 11 ∗ ∗ ∗ ∗ 4 5 ∗
∗ ∗ ∗ ∗ 10 12 ∗ ∗ ∗ ∗ 4 6

∗ ∗ ∗ 12 ∗ 11 ∗ ∗ ∗ 6 ∗ 5




From Propositions 9; 11 and Example 13 it follows the statement of Theorem 4.

9. Proof of Theorem 5

Let s¿2; l¿1 be 5xed integers and n¿2s + l be an arbitrary integer. Let [n] =
{1; 2; : : : ; n} be the set of integers from 1 to n and E(s; n) be the collection of all ( n

s )
s-subsets of [n]. Following Macula (1996), we de5ne the binary code X = ||xB(A)||,
B∈E(s; n); A∈E(s + l; n), of size t = ( n

s+l) and length N = ( n
s ), whose element

xB(A) = 1 if and only if B ⊂ A. One can easily understand that X is the constant
weight code with parameters:

t =

(
n

s + l

)
; N =

(
n

s

)
; k =

(
n − s

l

)
; w =

(
s + l

s

)
; � =

(
s + l − 1

s

)
;

where t-code size, N -code length, w-weight of columns (codewords), k-weight of rows
and �-the maximal dot product of codewords. In addition, let A0; A1; : : : ; As; Ai ∈E(s+
l; n) be an arbitrary (s + 1)-collection of pairwise diLerent (s + l)-subsets of [n]. Since
A0 �= Ai, for any i = 1; 2 : : : ; s, there exists an element ai ∈A0 and ai �∈ Ai. Hence,
there exists a s-subset B⊂A0 and for any i = 1; 2; : : : ; s, B �⊂Ai. It follows that X
is a superimposed (s; t; k)-code. For the particular case l = 1, these properties yield
Theorem 5.
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