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Abstract — We introduce and discuss the concept of a binary
superimposed (s, ¢)-code identified by a family of finite sets in
which no intersection of ¢ sets is covered by the union of s others.
Upper and lower bounds on the rate of these codes are formulated.
Their proofs will be given in [7]. Several constructions of these
codes are considered in the second part of the present paper [6].

1 Notations and Definitions

In what follows, symbol £ denotes equalities by definition. For any
positive integer n, we put [n] = {1,2,...,n}.

Let N and ¢ be positive integers. Consider a set C £ {x(1),...,x(t)},
composed of t mutually different binary vectors (codewords) of length N;
x(j) = (z1(5),- - an(4)), :(j) € {0,1}, j € [t].

In what follows, we fix positive integers s and £, such that s+ ¢ < ¢.

Definition 1. A set C is called a superimposed (s, £)-code (or, briefly,
(s,0)-code) if for any two sets S, L C [t], such that |S| = s, |£]| = ¢ and
SN L = &, these exists a position i € [N], for which z;(j) = 1 for all
jeL,and z;(j7) =0 for all j/ € S.

Integers N and t are called the length and size of code C, respectively.

For the binary vectors x £ (z1,...,2x) and y £ (y1,...,yn), we
consider the disjunction operation x \/ y and conjunction operation x A y
defined component-wise, where 0 V0O =0,0v1=1v0=1Vv1 =1,
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0OANO=0A1=1A0=0,1A1=1. We say that vector x is covered by
vectory if x\/y =y.

Remark. Obviously, definition 1 is equivalent to the condition:

/\ x(j) is not covered by \/ x(5").
jeL j'€S

An interpretation of an (s, £)-code as a family of set with certain prop-
erties is given in “Part II” of the present paper [6].

Consider the collection P(s, ¢, t), composed of supersets p:

PiCtv PL SE,
P(s,l,t) 2{p={P1,..., P} : 1<k<s, 14, | ‘ ) .
P, € Py for i £

We call an element p € P(s,4,t) a positive supersets, and an element
P € p — a positive set in terms of superset p.

For a positive superset p € P(s,¢,t) and a set C £ {x(1),...,x(t)}
define the output vector o = o(p,C) as follows:

o(p.C) & \/ N x(). (1)

PepjeP

Definition 2. A set C is called a superimposed (s,f)-design (or,
briefly, (s,£)-design), if o(p1,C) # o(ps,C) for any p1,p2 € P(s,4,t),
P1 # P2

Proposition 1. [7] 1) Any (s,€)-code is an (s,{)-design. 2) Any
(s,0)-design is an (s — 1,£)-code and an (s,£ — 1)-code.

2 Background and Motivations

For the special case £ = 1, a superimposed (s, 1)-code ((s,1)-design) is
called a superimposed s-code (s-design). They were introduced in [1]
and studied in [2, 3, 4]. See also the book [5].

Superimposed (s, f)-codes and designs arise from the problem of
group testing for supersets, which can be stated as follows. Assume
that we have a set of ¢ objects (we identify them by integers j € [t]),
in which several subsets Pi,..., P, C [t] are positive. Assume that a
number of positive subsets k < s, and the size of each positive subset is



not greater then . Our aim is to determine all positive subsets using a
finite number of tests. In each test we take a group G C [t] and examine
it. The test result r(G) = 1 (positive) if P,, C G for some m € [k], and
r(G) = 0 (negative) otherwise.

Let G £ (Gy,...,Gx) be N testing groups. In the current model we
use nonadaptive testing, which means that we select all groups before any
test is performed. Let vector r = r(G) £ (r(Gy),...,7(Gx)) represent
the results of N tests.

Encode the testing groups by the set C = {x(1),...,x(t)}, where
z;(j) = 1 if element j € G;, and z;(j) = 0 otherwise. Denote by p the
superset composed of positive sets P,..., P;. Then one can see that
the binary output vector o(p,C) = r(G), see (1).

Our aim can be formulated as follows: construct a set C so that
any unknown positive superset p** € P(s,{,t) could be determined (de-
coded) given the known output vector o = o(p"",C).

Obviously, it is possible if and only if the output vectors are different
for any positive sets, i.e., if C is an (s, £)-design (see definition 2). The de-
coding algorithm in general case has the following form: look over all su-
persets p € P(s, ¥, t), for each of them calculate the output vector o(p’,C)
and compare it with the given vector o". The decoding complexity of
this algorithm is proportional to the size |P(s, £, t)| ~ t¢/s!(¢!)*, when
t — oo, while s and ¢ are fixed.

Since any (s, £)-code C is also an (s, £)-design (proposition 1), it also
can be used for decoding supersets. Moreover, in this case the following
decoding algorithm can be used:

1. Look over all sets P C [t], |P| < ¢, using increasing order of sizes,
except those, which contain any positive set P, € p"" of smaller
size found before.

2. For each such set P calculate the output vector o({P},C).

3. P is positive set (P € p"") if and only if o({P},C) is covered by

the given vector ok".

The decoding complexity of this algorithm is proportional to the number
of such sets P, which is ~ ¢*/s!, when t — 00, s and ¢ are fixed.
If £ = 1, then each positive set P contains exactly one element, which

is called the positive element. See [5] for the more detailed investigation
of the group testing and its applications.



3 Properties of (s, /)-codes

Denote by N(t, s,¢) and N'(t, s, ) the minimum possible length of (s, £)-
code and (s, {)-design of size t, respectively. Denote by ¢(N,s,¢) and
t'(N,s,¢) the maximum possible size of (s,¢)-code and (s, ¢)-design of
length N, respectively.

Proposition 1 yields the inequalities
max {N(t,s — 1,0),N(t,s,0 — 1)} < N'(t,s,0) < N(t,s,0),
min {¢(N,s — 1,0),t(N,s,t — 1)} > t'(N,s,0) > t(N,s,{).

Proposition 2. (Trivial (s,£)-code). Take an integer w, such that
(<w<t—s PutN =2 (5}) and consider a set of codewords C, for

which x; £ (z;(1),...,2;(t)), i € [N], are all possible binary vectors of
weight w. Then C is an (s,f)-code and, therefore,

eeosm{() () (i)

If t = s+ ¢, then this condition holds with the sign of equality.
Inequality (2) can be generalized as follows:

seso<mt (V). CUT)) e

Inequality (2) follows from (3) and the trivial bound on the length of
superimposed s-codes N (t,s,1) < t. It also gives the way to construct
(s,£)-codes based on the s-codes, see “Part II” of the present paper [6].

Proposition 3. (Symmetry). IfC an (s,{)-code, then a set C, which
is obtained by replacing 0 —— 1 in C, is an (¢, s)-code. Hence,

N(t,s,0) = N(t,¢,s), t(N,s,£)=1t(N,,s).

4 Bounds on the Rate

For fixed 1 < ¢ < s, we define a rate of a superimposed (s, £)-code

— logy t(N,s,0) — logyt
a 2tV 5, 6) 2
R(s,6) = Jim N Jm N(t,s,0)



Proposition 3 yields the symmetry property of the rate: R(s,¢) = R(¢, ).
Taking this into account, in what follows we assume that s > £.

One can prove the following trivial upper bound on the rate:

1
R(s,0) < —.
(S’ ) — 56
The better bound is obtained by the method which was used in [2] for
the case £ = 1. Consider the functions

A

h(p) = —plogop — (1 —p)logy(1 —p), 0<p<1,
fs(v) 2 h(v/s) —vh(1/s), 0<wv<1, s>1.

Proposition 4. [7] For s > £ > 1 the rate

R(s,0) < R(s,0) &

d(s,0)’
where d(s,l) for s > € > 1 is defined recurrently:

o if (=1, then d(1,1) £ 1, d(2,1) has the form

-1
d(2,1) £ [max fQ(U):| = £2(0.4)"" ~ 3.106,

0<v<1

and for s > 3 the number d(s,1) is the unique solution of the
equation

o) = 1. (1- 50 UL de 1) = d(s—11)

e if { > 2, then for s > (

s—0+1
d(s,0) 2 > d(s —k+1,0—1)+d((,(—1).
k=1

The lower bound is obtained by the random coding method.
Proposition 5. [7] For s > ¢ > 1 the rate

» max{F(s,0), Ey(s,{)}
o s+0—1

R(s,?¢) > R(s,?) >0,



where

N 550t
Eq(s,0) = —logy (1 - Grot)

1 -1 1 s
Ey(s,0) & —1 1— |- 1-—- :
2(s,£) = max 0g2< (q> < q) )/q

The asymptotic properties of the lower bound is given by
Proposition 6. Let s — oo and £ > 2 be fizred. Then the lower

bound .
et logy e
R(s,0) ~ ——
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New Results in the Theory
of Superimposed Codes: Part 11

A.D’yachkov!, A. Macula?, D. Torney®, P. Vilenkin!, S. Yekhanin!

Abstract — In the second part of the paper, we work out a con-
structive method for (s, ¢)-codes [8] based on concatenated codes and
MDS-codes [2, 3]. The method is a generalization of the constructive
method for (s,1)-codes [1, 6]. In addition, we discuss the constructions
of the list-decoding superimposed codes [4, 7], identified by a family
of finite sets in which no union of L sets is covered by the union of s
others.

1 Notations and Definitions

We use notations and definitions from “Part I” of the present paper [8]. Let ¢
and N be positive integers, and C be a set of ¢ binary codewords of length N:

C2{x(1),....,x(t)}, x(j)2 (21(§),...,zn(j)) € {0,1}". (4)

For any subset 7 C [t] consider the disjunction and conjunction
V(r) £\ x(), A& A x0). (5)
JET JET
For positive integers s and ¢, such that ¢ > s + ¢, put
m(s,0,t) £ {(S,L) : S,LC[t],|S|=s,|L]=0SNL=0}. (6)

Definition 1 [8]. A superimposed binary (s, £)-code of length N and size t
is a set C (4), such that for any pair (S, L) € 7(s,£,t) the vector A(L) is not
covered by V(S).

Definition 2. A superimposed list-decoding code of strength s and list-size
L is a set C (4), such that for any pair (S, L) € n(s, L,t) the vector V(L) is
not covered by V(S).
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If |7| = 1, then V(7) = A(7). For this reason, for £ = L = 1 definitions 1
and 2 are equivalent, and a set C in this case is called a binary superimposed
code of strength s (or, briefly, s-code).

A codeword x(j) can be interpreted as a subset of the set [N]. Then V()
is the union, and A(7) is the intersection of corresponding sets. Taking this
into account, a superimposed s-code can be identified by a family of sets in
which no set is covered by a union of s others; a superimposed (s, ¢)-code is
identified by a family of sets in which no intersection of ¢ sets is covered by a
union of s others; and a superimposed s-code with list-size L is identified by
a family of sets in which no union of L sets is covered by a union of s others.

The applications of s-codes and (s, £)-codes to the problem of identifying
positive elements and positive sets in the group testing model are discussed in
“Part I” of the present paper [8, Sec. 2]. Superimposed s-codes with list-size L
can also be used in this model as follows: if p C [¢] is a set of positive elements,
Ip| < s, and testing groups form an s-code with list-size L, then given the test
results one can construct a set p’ C [t], such that p C p’ and |p'\p| < L — 1. If
L =1, then one can decode an unknown set p exactly.

2 Constructions of (s, /)-codes

Trivial construction. Let C’ be an (s, 1)-code of length N’ and size t. Put
N 2 (1\2 ) and let o1,...,0n be all £-subsets of the set [N’]. Construct a new

code C 2 {x(1),...,x(t)} of length N, for which

zi(j) 2\ wn), i€[N], jelt.
meo;

Then C is an (s, £)-code. This yields the bound [8, (3)].

Concatenated construction. Consider an integer ¢ > 2 and a set C (4),
in which elements z;(j) are taken from the g-ary alphabet [¢] = {1,...,¢}.

Definition 3. A g-ary set C defined above is called a superimposed q-ary
(s, £)-code, if for any pair (S, L) € 7(s, ¥, t) there exists a coordinate ¢ € [n] for
which the coordinate sets

Li2{zi(j) - jeLYClgl and S 2 {z:(j') : 5 €S} Cld

are disjoint, i.e., S; N L; = &. Integers t and n are called the size and length
of code C, respectively.

Proposition 7. (Concatenated construction) Let s > 1, £>1,¢t> s+ /£
and q > s+ £ be integers. Assume that there exists a q-ary (s,£)-code c@ =
Hx(q)(j)H of size D and length n'? and an (s,€)-code C' = ||2}(4)|| of size

2



t' > q and length n’. Then there exists a superimposed (s,f)-code C of size
t =t9 and length N = nPn/.

Proof. The code C is constructed by the concatenation of codes C(? and
C', i.e., each g-ary symbol 0 € [q] in the code €@ is replaced with the codeword
x'(0) from the code C'. The j-th codeword of the new code C has the form

x() 2 (< (#70)), x (+99)))

One can easily prove that this code C is really an (s, £)-code.

Proposition 8. Let s = £ = 2. Then the minimum length N(t,2,2) for
4 <t < 8 has the form

N(4,2,2) = (3) =6, N(52,2)=(3) =10,
N(6,2,2) = N(7,2,2) = N(8,2,2) = 14.

Proof. For t = s+ ¢ = 4 the optimal (s, ¢)-code is trivial [8, Prop. 2].
For t = 5,6 we used a computer exhaustive search: for ¢ = 5 the optimal
(2,2)-code is trivial, and for ¢ = 6 the optimal code has length N = 14 (the
trivial length for this case is (5) = 15).

Consider the following 3 x 8 quaternary matrix

Yy
4 2 3 1 2 4 1 3
cW=(112 2 3 3 4 4
2 4 1 3 2 4 1 3
One can check that the columns of C™ form a superimposed quaternary
(2,2)-code of size 8 and length 3. The concatenation of this code with the
trivial (2,2)-code of size 4 and length (3) = 6 leads to the binary (2,2)-code
of size t = 8 and length N = 6 -3 = 18. Examining this code, one can see
that there is a pair of rows, which are repeated three times in the given code.
Obviously, we can remove two copies of each row, and get the binary (2,2)-
code of size t = 8 and length N = 14. Since N(6,2,2) = 14, we have that
N(8,2,2) = N(7,2,2) = 14.

Definition 4. The Mazimum Distance Separable code (MDS-code) with
parameters (q, k,n) is a g-ary code of size t = ¢"®, length n and the Hamming
distance d =n — k+1 [3].

Proposition 9. If¢* > s+ ¢ and n > sé(k — 1) + 1, then any MDS-code
with parameters (q,k,n) is a superimposed q-ary (s, £)-code.

For any integer A > 1 and a prime power ¢ > X there exists an MDS-code
with parameters (¢, A+ 1,q + 1) (Reed—Solomon code). The concatenation of
this code with the optimal binary superimposed code of size g leads to the
following



Proposition 10. Let s > 1, £ > 1 and A > 1 be integers and q > st be a
prime power. Then

N(q>‘+l7 s,€) < N(q,s,¢) [SZ)\ + 1] .
Table 1 gives several numerical values of upper bounds on N (¢,2,2) calcu-
lated with the help of propositions 8 and 10. For instance,
1. N(16,2,2) = N(4%,2,2) < N(4,2,2) - [4-14+1] <6 -5 = 30;
2. N(512,2,2) = N(8%,2,2) < N(8,2,2)-[4-2+1] < 14-9 = 126;

t 4 8 16 25 64 512 625 272 216 2%
N 6 14 30 50 70 126 250 270 390 510

Table 1. Parameters of superimposed (2, 2)-codes

3 On Constructions of List-Decoding Codes

For a set of codewords C (4) and a subset 7 C [t] denote by L(7,C) > 0 the
number of indices j € [¢]\7, such that the vector x(j) is not covered by V(7).
Let Ls(C) denote the maximum value of L(7,C) over all 7 C [¢], || = s. The
number L (C) is the maximum list-size of the list-decoding superimposed code
of strength s (see definition 2).

Along with Ls(C) we study the number L (C), which is the average number
of codewords covered by a random s-subset T C [t]:

ey S Lo / (i) (7)
TC[t]

ITll=s

Further we claculate value of L} and give the upper bound on L, for
binary superimposed codes, that are obtained from g¢-nary MDS codes by
trival concatenation. Those codes were studied in [1, 6, 7]

We say that the concatenation is trival if g-nary symbols are replaced with
the columns of the (¢ X ¢) identity matrix.

Theorem 1: For a binary superimposed code, obtained from (g, k,n)
MDS code by trival concatenation,

() — )

(%)
Cl) =Y ()" (”) D(p, )

(®)



("D iy < ks
D(p,v) = »
6=l v

k—1 v—1 )
A =0~ D3 (-1 ( )q
§=0

Theorem 2: For a binary superimposed code, obtained from (g, k,n)

MDS code by trival concatenation,

_ k—1
L(s) < min{s" —s,¢" — % — s}, (9)

where w is the greatest solution of the equatation

ﬁ(w—i>=<n—1><n—k+1>(q‘S)H

q

=1

Another construction of list-decoding superimposed codes based on the

incidence of the finite sets was studied in [5].
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