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Abstract — We introduce and discuss the concept of a binary
superimposed (s, `)-code identified by a family of finite sets in
which no intersection of ` sets is covered by the union of s others.
Upper and lower bounds on the rate of these codes are formulated.
Their proofs will be given in [7]. Several constructions of these
codes are considered in the second part of the present paper [6].

1 Notations and Definitions

In what follows, symbol , denotes equalities by definition. For any
positive integer n, we put [n] , {1, 2, . . . , n}.

Let N and t be positive integers. Consider a set C , {x(1), . . . ,x(t)},
composed of t mutually different binary vectors (codewords) of length N ;
x(j) =

(
x1(j), . . . , xN (j)

)
, xi(j) ∈ {0, 1}, j ∈ [t].

In what follows, we fix positive integers s and `, such that s + ` ≤ t.
Definition 1. A set C is called a superimposed (s, `)-code (or, briefly,

(s, `)-code) if for any two sets S,L ⊂ [t], such that |S| = s, |L| = ` and
S ∩ L = ∅, these exists a position i ∈ [N ], for which xi(j) = 1 for all
j ∈ L, and xi(j′) = 0 for all j′ ∈ S.

Integers N and t are called the length and size of code C, respectively.
For the binary vectors x , (x1, . . . , xN ) and y , (y1, . . . , yN ), we

consider the disjunction operation x
∨

y and conjunction operation x
∧

y
defined component-wise, where 0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1,
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0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1. We say that vector x is covered by
vector y if x

∨
y = y.

Remark. Obviously, definition 1 is equivalent to the condition:∧
j∈L

x(j) is not covered by
∨

j′∈S
x(j′).

An interpretation of an (s, `)-code as a family of set with certain prop-
erties is given in “Part II” of the present paper [6].

Consider the collection P(s, `, t), composed of supersets p:

P(s, `, t) ,

{
p = {P1, . . . , Pk} : 1 ≤ k ≤ s,

Pi ⊂ [t], |Pi| ≤ `,

Pi 6⊆ Pi′ for i 6= i′

}
.

We call an element p ∈ P(s, `, t) a positive supersets, and an element
P ∈ p — a positive set in terms of superset p.

For a positive superset p ∈ P(s, `, t) and a set C , {x(1), . . . ,x(t)}
define the output vector o = o(p, C) as follows:

o(p, C) ,
∨
P∈p

∧
j∈P

x(j). (1)

Definition 2. A set C is called a superimposed (s, `)-design (or,
briefly, (s, `)-design), if o(p1, C) 6= o(p2, C) for any p1, p2 ∈ P(s, `, t),
p1 6= p2.

Proposition 1. [7] 1) Any (s, `)-code is an (s, `)-design. 2) Any
(s, `)-design is an (s− 1, `)-code and an (s, `− 1)-code.

2 Background and Motivations

For the special case ` = 1, a superimposed (s, 1)-code ((s, 1)-design) is
called a superimposed s-code (s-design). They were introduced in [1]
and studied in [2, 3, 4]. See also the book [5].

Superimposed (s, `)-codes and designs arise from the problem of
group testing for supersets, which can be stated as follows. Assume
that we have a set of t objects (we identify them by integers j ∈ [t]),
in which several subsets P1, . . . , Pk ⊂ [t] are positive. Assume that a
number of positive subsets k ≤ s, and the size of each positive subset is
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not greater then `. Our aim is to determine all positive subsets using a
finite number of tests. In each test we take a group G ⊂ [t] and examine
it. The test result r(G) = 1 (positive) if Pm ⊆ G for some m ∈ [k], and
r(G) = 0 (negative) otherwise.

Let G , (G1, . . . , GN ) be N testing groups. In the current model we
use nonadaptive testing, which means that we select all groups before any
test is performed. Let vector r = r(G) , (r(G1), . . . , r(GN )) represent
the results of N tests.

Encode the testing groups by the set C = {x(1), . . . ,x(t)}, where
xi(j) = 1 if element j ∈ Gi, and xi(j) = 0 otherwise. Denote by p the
superset composed of positive sets P1, . . . , Pk. Then one can see that
the binary output vector o(p, C) = r(G), see (1).

Our aim can be formulated as follows: construct a set C so that
any unknown positive superset pun ∈ P(s, `, t) could be determined (de-
coded) given the known output vector okn = o(pun, C).

Obviously, it is possible if and only if the output vectors are different
for any positive sets, i.e., if C is an (s, `)-design (see definition 2). The de-
coding algorithm in general case has the following form: look over all su-
persets p ∈ P(s, `, t), for each of them calculate the output vector o(p′, C)
and compare it with the given vector okn. The decoding complexity of
this algorithm is proportional to the size |P(s, `, t)| ∼ ts`/s!(`!)s, when
t→∞, while s and ` are fixed.

Since any (s, `)-code C is also an (s, `)-design (proposition 1), it also
can be used for decoding supersets. Moreover, in this case the following
decoding algorithm can be used:

1. Look over all sets P ⊂ [t], |P| ≤ `, using increasing order of sizes,
except those, which contain any positive set Pm ∈ pun of smaller
size found before.

2. For each such set P calculate the output vector o({P}, C).

3. P is positive set (P ∈ pun) if and only if o({P}, C) is covered by
the given vector okn.

The decoding complexity of this algorithm is proportional to the number
of such sets P , which is ∼ ts/s!, when t→∞, s and ` are fixed.

If ` = 1, then each positive set P contains exactly one element, which
is called the positive element. See [5] for the more detailed investigation
of the group testing and its applications.
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3 Properties of (s, `)-codes

Denote by N(t, s, `) and N ′(t, s, `) the minimum possible length of (s, `)-
code and (s, `)-design of size t, respectively. Denote by t(N, s, `) and
t′(N, s, `) the maximum possible size of (s, `)-code and (s, `)-design of
length N , respectively.

Proposition 1 yields the inequalities

max
{
N(t, s− 1, `), N(t, s, `− 1)

}
≤ N ′(t, s, `) ≤ N(t, s, `),

min
{
t(N, s− 1, `), t(N, s, `− 1)

}
≥ t′(N, s, `) ≥ t(N, s, `).

Proposition 2. (Trivial (s, `)-code). Take an integer w, such that
` ≤ w ≤ t − s. Put N ,

(
t
w

)
and consider a set of codewords C, for

which xi ,
(
xi(1), . . . , xi(t)

)
, i ∈ [N ], are all possible binary vectors of

weight w. Then C is an (s, `)-code and, therefore,

N(t, s, `) ≤ min
{(

t

s

)
,

(
t

`

)}
=
(

t

min{s, `}

)
. (2)

If t = s + `, then this condition holds with the sign of equality.
Inequality (2) can be generalized as follows:

N(t, s, `) ≤ min
{(

N(t, `, 1)
s

)
,

(
N(t, s, 1)

`

)}
. (3)

Inequality (2) follows from (3) and the trivial bound on the length of
superimposed s-codes N(t, s, 1) ≤ t. It also gives the way to construct
(s, `)-codes based on the s-codes, see “Part II” of the present paper [6].

Proposition 3. (Symmetry). If C an (s, `)-code, then a set C, which
is obtained by replacing 0←→ 1 in C, is an (`, s)-code. Hence,

N(t, s, `) = N(t, `, s), t(N, s, `) = t(N, `, s).

4 Bounds on the Rate

For fixed 1 ≤ ` ≤ s, we define a rate of a superimposed (s, `)-code

R(s, `) , lim
N→∞

log2 t(N, s, `)
N

= lim
t→∞

log2 t

N(t, s, `)
.
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Proposition 3 yields the symmetry property of the rate: R(s, `) = R(`, s).
Taking this into account, in what follows we assume that s ≥ `.

One can prove the following trivial upper bound on the rate:

R(s, `) ≤ 1
s`

.

The better bound is obtained by the method which was used in [2] for
the case ` = 1. Consider the functions

h(p) , −p log2 p− (1− p) log2(1− p), 0 < p < 1,

fs(v) , h(v/s)− vh(1/s), 0 < v < 1, s > 1.

Proposition 4. [7] For s ≥ ` ≥ 1 the rate

R(s, `) ≤ R(s, `) ,
1

d(s, `)
,

where d(s, `) for s ≥ ` ≥ 1 is defined recurrently:

• if ` = 1, then d(1, 1) , 1, d(2, 1) has the form

d(2, 1) ,

[
max

0≤v≤1
f2(v)

]−1

= f2(0.4)−1 ≈ 3.106,

and for s ≥ 3 the number d(s, 1) is the unique solution of the
equation

d(s, 1) =
[
fs

(
1− d(s− 1, 1)

d(s, 1)

)]−1

, d(s, 1) ≥ d(s− 1, 1);

• if ` ≥ 2, then for s ≥ `

d(s, `) ,
s−`+1∑
k=1

d(s− k + 1, `− 1) + d(`, `− 1).

The lower bound is obtained by the random coding method.
Proposition 5. [7] For s ≥ ` ≥ 1 the rate

R(s, `) ≥ R(s, `) ,
max{E1(s, `), E2(s, `)}

s + `− 1
> 0,
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where

E1(s, `) , − log2

(
1− ss``

(s + `)s+`

)
,

E2(s, `) , max
q=2,3,...

− log2

(
1−

(
1
q

)`−1(
1− 1

q

)s
)/

q.

The asymptotic properties of the lower bound is given by
Proposition 6. Let s → ∞ and ` ≥ 2 be fixed. Then the lower

bound

R(s, `) ∼ ``e−` log2 e

s`+1
.
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New Results in the Theory
of Superimposed Codes: Part II

A.D’yachkov1, A.Macula2, D.Torney3, P.Vilenkin1, S. Yekhanin1

Abstract — In the second part of the paper, we work out a con-
structive method for (s, `)-codes [8] based on concatenated codes and
MDS-codes [2, 3]. The method is a generalization of the constructive
method for (s, 1)-codes [1, 6]. In addition, we discuss the constructions
of the list-decoding superimposed codes [4, 7], identified by a family
of finite sets in which no union of L sets is covered by the union of s
others.

1 Notations and Definitions

We use notations and definitions from “Part I” of the present paper [8]. Let t
and N be positive integers, and C be a set of t binary codewords of length N :

C , {x(1), . . . ,x(t)}, x(j) ,
(
x1(j), . . . , xN (j)

)
∈ {0, 1}N . (4)

For any subset τ ⊂ [t] consider the disjunction and conjunction

V(τ) ,
∨
j∈τ

x(j), Λ(τ) ,
∧
j∈τ

x(j). (5)

For positive integers s and `, such that t ≥ s + `, put

π(s, `, t) ,
{
(S,L) : S,L ⊂ [t], |S| = s, |L| = `, S ∩ L = ∅

}
. (6)

Definition 1 [8]. A superimposed binary (s, `)-code of length N and size t
is a set C (4), such that for any pair (S,L) ∈ π(s, `, t) the vector Λ(L) is not
covered by V(S).

Definition 2. A superimposed list-decoding code of strength s and list-size
L is a set C (4), such that for any pair (S,L) ∈ π(s, L, t) the vector V(L) is
not covered by V(S).
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If |τ | = 1, then V(τ) = Λ(τ). For this reason, for ` = L = 1 definitions 1
and 2 are equivalent, and a set C in this case is called a binary superimposed
code of strength s (or, briefly, s-code).

A codeword x(j) can be interpreted as a subset of the set [N ]. Then V(τ)
is the union, and Λ(τ) is the intersection of corresponding sets. Taking this
into account, a superimposed s-code can be identified by a family of sets in
which no set is covered by a union of s others; a superimposed (s, `)-code is
identified by a family of sets in which no intersection of ` sets is covered by a
union of s others; and a superimposed s-code with list-size L is identified by
a family of sets in which no union of L sets is covered by a union of s others.

The applications of s-codes and (s, `)-codes to the problem of identifying
positive elements and positive sets in the group testing model are discussed in
“Part I” of the present paper [8, Sec. 2]. Superimposed s-codes with list-size L
can also be used in this model as follows: if p ⊂ [t] is a set of positive elements,
|p| ≤ s, and testing groups form an s-code with list-size L, then given the test
results one can construct a set p′ ⊂ [t], such that p ⊆ p′ and |p′\p| ≤ L− 1. If
L = 1, then one can decode an unknown set p exactly.

2 Constructions of (s, `)-codes

Trivial construction. Let C′ be an (s, 1)-code of length N ′ and size t. Put

N ,
(

N′

`

)
and let σ1, . . . , σN be all `-subsets of the set [N ′]. Construct a new

code C , {x(1), . . . ,x(t)} of length N , for which

xi(j) ,
∨

m∈σi

x′m(j), i ∈ [N ], j ∈ [t].

Then C is an (s, `)-code. This yields the bound [8, (3)].

Concatenated construction. Consider an integer q ≥ 2 and a set C (4),
in which elements xi(j) are taken from the q-ary alphabet [q] = {1, . . . , q}.

Definition 3. A q-ary set C defined above is called a superimposed q-ary
(s, `)-code, if for any pair (S,L) ∈ π(s, `, t) there exists a coordinate i ∈ [n] for
which the coordinate sets

Li ,
{
xi(j) : j ∈ L

}
⊆ [q] and Si ,

{
xi(j

′) : j′ ∈ S
}
⊆ [q]

are disjoint, i.e., Si ∩ Li = ∅. Integers t and n are called the size and length
of code C, respectively.

Proposition 7. (Concatenated construction) Let s ≥ 1, ` ≥ 1, t ≥ s + `
and q ≥ s + ` be integers. Assume that there exists a q-ary (s, `)-code C(q) =

‖x(q)
i (j)‖ of size t(q) and length n(q) and an (s, `)-code C′ = ‖x′i(j)‖ of size
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t′ ≥ q and length n′. Then there exists a superimposed (s, `)-code C of size
t = t(q) and length N = n(q)n′.

Proof. The code C is constructed by the concatenation of codes C(q) and
C′, i.e., each q-ary symbol θ ∈ [q] in the code C(q) is replaced with the codeword
x′(θ) from the code C′. The j-th codeword of the new code C has the form

x(j) ,
(
x′
(
x

(q)
1 (j)

)
, . . . ,x′

(
x

(q)

n′ (j)
))

.

One can easily prove that this code C is really an (s, `)-code.

Proposition 8. Let s = ` = 2. Then the minimum length N(t, 2, 2) for
4 ≤ t ≤ 8 has the form

N(4, 2, 2) =
(
4
2

)
= 6, N(5, 2, 2) =

(
5
2

)
= 10,

N(6, 2, 2) = N(7, 2, 2) = N(8, 2, 2) = 14.

Proof. For t = s + ` = 4 the optimal (s, `)-code is trivial [8, Prop. 2].
For t = 5, 6 we used a computer exhaustive search: for t = 5 the optimal
(2, 2)-code is trivial, and for t = 6 the optimal code has length N = 14 (the
trivial length for this case is

(
6
2

)
= 15).

Consider the following 3× 8 quaternary matrix

C(4) =

 4 2 3 1 2 4 1 3
1 1 2 2 3 3 4 4
2 4 1 3 2 4 1 3

 .

One can check that the columns of C(4) form a superimposed quaternary
(2, 2)-code of size 8 and length 3. The concatenation of this code with the
trivial (2, 2)-code of size 4 and length

(
4
2

)
= 6 leads to the binary (2, 2)-code

of size t = 8 and length N = 6 · 3 = 18. Examining this code, one can see
that there is a pair of rows, which are repeated three times in the given code.
Obviously, we can remove two copies of each row, and get the binary (2, 2)-
code of size t = 8 and length N = 14. Since N(6, 2, 2) = 14, we have that
N(8, 2, 2) = N(7, 2, 2) = 14.

Definition 4. The Maximum Distance Separable code (MDS-code) with
parameters (q, k, n) is a q-ary code of size t = qk, length n and the Hamming
distance d = n− k + 1 [3].

Proposition 9. If qk ≥ s + ` and n ≥ s`(k − 1) + 1, then any MDS-code
with parameters (q, k, n) is a superimposed q-ary (s, `)-code.

For any integer λ ≥ 1 and a prime power q ≥ λ there exists an MDS-code
with parameters (q, λ + 1, q + 1) (Reed–Solomon code). The concatenation of
this code with the optimal binary superimposed code of size q leads to the
following
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Proposition 10. Let s ≥ 1, ` ≥ 1 and λ ≥ 1 be integers and q ≥ s`λ be a
prime power. Then

N(qλ+1, s, `) ≤ N(q, s, `)
[
s`λ + 1

]
.

Table 1 gives several numerical values of upper bounds on N(t, 2, 2) calcu-
lated with the help of propositions 8 and 10. For instance,

1. N(16, 2, 2) = N(42, 2, 2) ≤ N(4, 2, 2) · [4 · 1 + 1] ≤ 6 · 5 = 30;

2. N(512, 2, 2) = N(83, 2, 2) ≤ N(8, 2, 2) · [4 · 2 + 1] ≤ 14 · 9 = 126;

t 4 8 16 25 64 512 625 212 216 220

N 6 14 30 50 70 126 250 270 390 510

Table 1. Parameters of superimposed (2, 2)-codes

3 On Constructions of List-Decoding Codes

For a set of codewords C (4) and a subset τ ⊂ [t] denote by L(τ, C) ≥ 0 the
number of indices j ∈ [t]\τ , such that the vector x(j) is not covered by V(τ).
Let Ls(C) denote the maximum value of L(τ, C) over all τ ⊂ [t], |τ | = s. The
number Ls(C) is the maximum list-size of the list-decoding superimposed code
of strength s (see definition 2).

Along with Ls(C) we study the number L∗
s(C), which is the average number

of codewords covered by a random s-subset τ ⊂ [t]:

L∗
s(C) ,

∑
τ⊂[t]
|τ‖=s

L(τ, C)

/(
t

s

)
. (7)

Further we claculate value of L∗
s and give the upper bound on Ls, for

binary superimposed codes, that are obtained from q-nary MDS codes by
trival concatenation. Those codes were studied in [1, 6, 7]

We say that the concatenation is trival if q-nary symbols are replaced with
the columns of the (q × q) identity matrix.

Theorem 1: For a binary superimposed code, obtained from (q, k, n)
MDS code by trival concatenation,

L∗
p = qk

(
(

qk−1
p

)
− C(p))(

qk

p

) (8)

C(p) =

n∑
i=1

(−1)i+1

(
n

i

)
D(p, i)
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D(p, v) =

{(
qk−v(q−1)v

p

)
, if v ≤ k;(

Av(v)
p

)
, if v > k.

Av(v) = (q − 1)

k−1∑
j=0

(−1)j

(
v − 1

j

)
qk−j−1

Theorem 2: For a binary superimposed code, obtained from (q, k, n)
MDS code by trival concatenation,

L(s) ≤ min{sk − s, qk − n ∗ (q − s) ∗ qk−1

w
− s}, (9)

where w is the greatest solution of the equatation

k−1∏
i=1

(w − i) = (n− 1)(n− k + 1)

(
q − s

q

)k−1

Another construction of list-decoding superimposed codes based on the
incidence of the finite sets was studied in [5].
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