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ABSTRACT 
A DS-CDMA receiver is typically implemented as a 
matched filter. Such a receiver, while optimum in 
additive white gaussian noise, may yield poor per- 
formance when multiple-access noise is the dominant 
interference. Previously proposed multiple-user re- 
ceivers greatly improve performance in this situation, 
but quickly become prohibitively complex for systems 
of realistic size. Here we propose a receiver which 
takes advantage of the colored power spectrum of the 
multiple-access noise to reject it. The receiver is s i n  
ple to implement, can run at high rates, and can be 
tuned adaptively. It is designed to maximize signal- 
tc-noise ratio, but is also shown to yield a substantial 
improvement over the conventional receiver in aver- 
age probability of error. 

INTRODUCTION 
It is well known that a matched filter is an optimal 
receiver in additive white gaussian noise (AWGN). 
When multiple DS-CDMA users access the same 
AWGN channel, each receiver also sees non-gaussian, 
non-white, multiple-access interference, so a matched 
receiver is no longer optimal. Previous papers have 
proposed alternate receiver structures. Most of these 
(e.g. [l]) are based on locking and despreading many 
(or all) of the CDMA signals simultaneously. This 
may be highly impractical, so instead we concen- 
trate on receivers which operate under two main con- 
straints: they base decisions on the received wave- 
form over approximately one bit time, and they do 
not require knowledge of any spreading sequences 
other than that of the single user of interest. 

Here we investigate the use of a transversal filter, 
with taps spaced at a fraction of the chip time, to 
reject multiple-access noise. This paper extends and 
complements results presented in [2]. The difference 
is that the receiver here is more amenable to imple- 
mentation at a high chip rate, and can be tuned a d a p  
tively without performing any matrix inversion. 

Suppose that a CDMA system with M users is 
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modeled as in Figure 1. The bit time is denoted 
by T ,  the processing gain by N, and the chip time 
by T, z 3. All spreading waveforms are rectangular 
and binary valued. The spreading codes for users 2 
through M are modeled as independent random bi- 
nary sequences at rate l/T,, but the code for user 1 is 
some fixed N chip sequence. For users 2 through M, 
the data on the random binary sequence is irrelevant 
and is not included in the model. The Bi and Ti are all 
assumed independent and uniformly distributed over 
[0,27r] and [0, T,], respectively. The n, ( t )  is AWGN 
of two sided PSD 3. There is no RI? bandpass filter- 
ing in the model. Perfect power control is assumed, 
so that all M CDMA signal amplitudes are the same 
at the receiver. Et, is defined as A2T/2. 

The statistics ri are integrals of the received wave- 
form over fractions of a chip interval, Tq = s, for 
some integer N q .  These are referred to as subchips. 
We assume throughout that 

N, 

wTq = n 2 ~  (1) 
for some integer n, with w the carrier frequency fiom 
Figure 1. 

The box labelled A ( t )  is a two sided FIR filter with 
K taps per side, of transfer function 

K 
A ( z ) =  C 

n=-K 

Note that if a,, = a,,, where 6, is the Kroneker delta 
function, then the receiver above is the same as a 
conventional receiver. 

In discrete notation, ci is the value of c ' ( t )  for the 
interval (i  - l)Tq < t < iTq. Thus, the series ci 
consists of the chips of c l ( t )  each repeated Nq times. 
All other discrete quantities are also defined on a Tq 
time base. The notation below assumes that we are 
receiving the bit transmitted in the interval [O,T], 
and that d ' ( t )  = +1 in this interval. 

Using these assumptions and Figure 1, 
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M 

m=2 

where 
iTq 

I? = Acmem ji-l)Tq c*(t - rm)dt, 

and 
iTq 

ni = L-llTq % ( t ) 2 c 4 J W -  

To determine signal-tenoise ratio, it is necessary 
to define the autocorrelation of the noise, including 
white and multipleaccess noise. The ansumptiom 
above make the noise a stationary process, 80 this 
autocorrelation can be written as 

where 
M __ 

J~ E n i +  IF ( 5 )  
m=2 

The evaluation of this series for rectangular spreading 
pulses is detailed in [2]. The technique proposed here 
could be applied to other chip waveforms simply by 
evaluating the appropriate autocorrelation function 
( 4)- 

The decision statistic is given by 

where 

NN.+K 

= 2 r j q j ,  

j = -  ( K -  1 )  
(7) 

and p i  is the series which is one for i E [ l - . .  N N q ]  
and zero elsewhere. 

Figure 1 uses a discrete time filter only for math- 
ematical simplicity. Under the assumption of ( l), 
this model is equivalent to passing the received RF 
or IF waveform directly through a transversal filter 
with tap spacing Tq, before going to a conventional 
CDMA receiver. This latter form could be feasibly 
implemented even at  a high chip rate. 

TAP WEIGHTS WHICH MAXIMIZE SNR 
Consider the model of Figure 1, where user 1, instead 

of transmitting a stream of bits, transmits only one 
bit, i.e. 

d'W = fPT(t)r (9) 

where a ( t )  is 1 for t E [0, T ]  and 0 elsewhere. 
Assuming ( 9), it is a common result of detection 

theory [3] that the filter which maximizes SNR satis- 
fies 

where A ( z )  is given by ( 2) with infinite K, and @ ( z )  
is the z-transform of the noise autocorrelation defined 
by ( 4). Thus, @(.'") is the discrete time noise power 
spectral density (PSD). Applying ( lo), 

This an is a real, even series. It is of infinite dura- 
tion in general, and so cannot be implemented ex- 
actly as a transversal filter of finite size K. However, 
considering this case provides a useful insight: when 
( 10) is satisfied, Figure 1 represents the optimal r e  
ceiver for detecting f q p i  in colored goussian noise of 
PSD a(&"'), using an infinite observation interval [3]. 
Thus, the receiver proposed here can be viewed as re- 
sulting from approximating Ji as a colored gaussian 
process of the same PSD. By the central limit the- 
orem, such an approximation should become more 
accurate the larger M is. It is shown in [3] that when 
( 10) is satisfied, Figure 1 can be thought of as a 
noise whitening filter followed by a matched filter. 
Now consider the case in which the filter is con- 

strained to K taps per side, as in ( 2). This re- 
sult can be expressed concisely in vector notation. 
The sequence qi defined by ( 8) is non-zero for j E 
[ - (K- l ) ,  NN,+K] .  So ij is defined as the NNq+2K 

vectors f and J are similarly defined as the same 
span of r i  and J i ,  respecti-vely. These series are 
given by ( 3) and ( 5).  d = E [ j j T ]  is the co- 
variance matrix of the noise process. The vector 
d is defined as [ a - ~  C Y K ] ~ .  o j  denotes a col- 
umn vector of j zeros. The vector Tj is defined as 
[OGK-j) , c l ,  c2 ,  - - - ,  c",, 071'. The matrix C is 
defined as [YO, 41, - - .  , 7 2 K ] .  This definition allows 
?j to be expressed concisely as ij = Cd. The signal 
vector 2, under the assumption of ( 9), is defined as 
YK. In this vector notation, ( 7) can be rewritten, 
using ( 3) and ( 5) ,  as 

by 1 vector [q-AK-l) q 4 K - 2 )  qNNq+KIT.  The 

G1 = fTs = ACTq+jTij (12) 
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From ( 12), the signal-tenoise ratio can be written 
as 

It can be shown that the ii which maximizes ( 13) is 
the solution to 

56 = T, (14) 
where 

=T= = 
M = ccpc 

f = ETC. 

and 

This yields the optimal tap weights under the crite- 
rion of maximum SNR 

This derivation is based on ( 9). In practice, d'(t) 
would be a long stream of data bits. But it is reason- 
able to assume that K < N N , ,  otherwise the filter 
A(z)  would be too large to implement. If K NN,, 
then the IS1 introduced by A(z)  into the final deci- 
sion statistic will not be significant. This statement 
is quantitatively justified in [4]. 

APPROXIMATE TAP WEIGHTS 
It is well known [5] that the common two-sided LMS 
filter observing the Ji process also yields the tap 
weights of equation ( 11) for infinite K. This suggests 
that perhaps the LMS filter might be substituted for 
( 14) for finite K as well. In fact, the two are similar 
for K >> N q ,  but can become significantly different 
for smaller K [4]. 

The solution to ( 14) takes into account the exact 
spreading code used, in the form of e. It is shown in 
[4] that a very close approximation to ( 14) can be 
found by replacing the actual ci series with 

and then solving ( 14). This filter is called the "one- 
chip" filter, since ( 15) corresponds to the shape of a 
single chip. It can be shown that the appearance of 
E in ( 14) can be expressed entirely in t e r m  of the 
aperiodic autocorrelation of E .  Given this, it is not 
surprising that the one-chip filter gives an accurate 
approximation of ( 14), since the autocorrelation of 
any reasonable spreading vector E is likely to be sim- 
ilar in shape to the autocorrelation of ( 15). 

The LMS and one-chip filters are similar, and in 
fact it can be shown that the LMS filter is a special 
case of the one-chip filter which results from substi- 
tuting Nq = 1 in ( 15). Similar to the LMS filter, 

the onechip filter can be tuned by various adaptive 
algorithms without solving the matrix equation ( 14). 
This is one of the main advantages of this implemen- 
tation over that presented in [2]. Details of an adap- 
tive structure are shown in [4]. 

An adaptive filter would ideally use, as input, the 
noise process Ji of ( 5). However, as long as M > 1, 
the autocorrelation of the ri process is not sign$- 
cantly different from that of Ji .  Using the Ti process 
directly to tune the adaptive filter is simpler and in- 
troduces very little error, as shown in the next sec- 
t ion. 

RESULTS 
The figures refer to the receiver of Figure 1 depending 
on the value of 6, the tap vector of the filter A(z) ,  as 
follows: 

Receiver I : an = 6,. This is a conventional 
(unfiltered) CDMA receiver. 

Receiver I1 : d set by ( 14), with E being the 
spreading sequence of user 1. 

Receiver I11 : d set by LMS criterion, as in [5]. 

Receiver IV : d set by ( 14), with t being the 
one-chip sequence of ( 15). 

Receiver V : d set by the adaptive filter de- 
scribed in [4], adapting to ri process instead of 
Ji. The expected steady-state d is used, 80 no 
tap adjustment error is present. 

Figures 2, 3, and 4 plot P[ for a system of 
N = 128, M = 39, and c'(t)  a particuliv 128 
chip sequence listed in [4]. Pt  denotes the gaussian 
approximation of the probability of error, which is 
q5(-m), where 

and SNR is the signal squared over the noise vari- 
ance in the final decision statistic. These values are 
for single bit reception, as in ( 9). For reference, 
these figures also plot P,9 for antipodal signalling in 
AWGN, which can be thought of as receiver I in the 
absence of multiple-access noise. 

Figures 2 and 3 illustrate the effect of Nq and 
K. Diminishing returns are generally seen as either 
increases. However, Figure 2 shows jumps in SNR 
when K increases to 1 more than a multiple of Nq. 
This is explained further in [4]. A lower bound on P i  
as Nq and K increase infinitely has been derived by 
A. Monk [4], and is only slightly below the Nq = 8 
curve in Figure 3. 
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Figure 4 plots the Pf resulting fiom several filters 
for Nq = 4 and K = 4. Receiver I1 has the lowest P,O 
since it maximizes SNR. The LMS filter gives similar 
performance at  low Eb/qo, but suddenly worsens at 
higher Ea/qo. Receiver V yields a P,9 so close to that 
of receiver I1 that the two cannot be distinguished on 
the graph. Thus, the errors introduced by adapting 
to ri instead of J i ,  and by using the one-chip filter as 
opposed to the filter of ( 14), are negligible for this 
choice of parameters. 

All the previous derivations and results have been 
based on signal-to-noise ratio, which is a helpful per- 
formance measure, but is not directly related to aver- 
age probability of error when the interference is non- 
gaussian. The accuracy of the gaussian approxim& 
tion for error probability in CDMA systems is dis- 
cussed in [SI. 

Figure, 5 plots the average probability of error, 
denoted by P,, calculated by the characteristic func- 
tion method of 171. It is believed that the numerical 
results are accurate to within the resolution of the 
plots. The system analyzed is that of 9 asynchronous 
users, using processing gain 31, each employing Gold 
spreading codes of period 31. In other respects the 
model used was similar to that of Figure 1. Nq = 4, 
K = 5, and ( 9) is not assumed, so the model ac- 
counts for filter-induced ISI. Pe is plotted for one of 
the users. Each curve corresponds to a fixed &. If 
5 were correctly tuned with varying &/90, then P, 
would approximately follow the minimum of all such 
curves. It can be seen that P, is substantially im- 
proved by the transversal filter receiver, and the per- 
formance is comparable to that found in [2]. 

CONCLUSIONS 
It has been shown that for rectangular spreading 
pulses, the transversal filter receiver of Figure 1 can 
achieve a large improvement in signal-to-noise ratio 
over the conventional receiver. This also translates 
into an improvement in average probability of error, 
even for a system of small M, where the gaussian 
approximation of error probability is less accurate. 
The receiver could be practically implemented using 
a transversal filter of tap spacing TJNq directly on 
the RF or IF received waveform. 

Since the technique presented here depends on 
multiple-access noise whitening, a flat-spectrum pulse 
shape cannot benefit from it. For example, using 
raised-cosine spectrum pulses, if there is 0% excess 
bandwidth, the noise spectrum is flat and there is 
no gain in filtering. As excess bandwidth increases, 
more benefit is seen. Flat-spectrum pulses are the 
most spectrally efficient [8], but, by using a filter as 
described here, the SNR for non-flat-spectrum pulses 

can be made to approach that of flat-spectrum pulses 
as multiple-access noise becomes large compared to 
thermal noise. Using a pulse shape with a rounded 
spectrum, with filtering at the receiver to compen- 
sate, may offer implementation advantages over at- 
tempting to approximate flat-spectrum pulses. 

All the analysis presented here can be equivalently 
phrased in terms of equalization, as opposed to detec- 
tion. Equalization is typically thought of as compen- 
sating for ISI, but i t  can also compensate for recep- 
tion in colored noise. Thus, the filter presented here 
can also be derived as a fractionally-spaced minimum 
MSE equalizer. All of these points are developed in 
detail in [4]. 
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Ac'(t) d'(t)cos@t) - 
Ac2(t-3) cos(wtt8,) - 

2cos(wt) 

Figure 1 : System Diagram. 
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Figure 2 : Dashed line is receiver I. Dotted line is d ( - m ) .  
Solid lines are receiver I1 for Nq = 4 with varying K. 

100 , I 

Eb/qo in Db 
Figure 4 : Dashed line is receiver I. Dotted line is 4 ( - m ) .  
Dash-Dot line is receiver 111. Solid line is receivers I1 and V. 

Figure 3 : Dashed line is receiver I. Dotted line is d ( - m ) .  
Solid lines are receiver 11, for wrying A'# with X = 2 4  + 1. 
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Figure 5 : Dotted line is receiver I. Lines "a" - "h" 
are for receiver IV with d optimized for .&b/q, = 5 Db + 22.5 
Db in 2.5Db steps. 
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