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Abstract

Ways of sharing a common channel without feedback
are considered. The channel is assumed to be a multi-
access OR channel and the decoding problem is consid-
ered for a certain class of superimposed codes. A decod-
ing algorithm is proposed and analysed in terms of max-
imal decoding complexity. The robustness of the decod-
ing algorithm is tested by simulations of decoding beyond
the designed capability of the code.

1. Introduction

The structure of "computer to computer'-traffic is
often referred to as "bursty”. With this we mean that the
peak to average ratio of the traffic load is very high. To
use fixed channel assignments in these situations is a
big waste, since most of the channel will either be left idle
or there will be very large delays for the message trans-
missions. For bursty traffic situations it is common to
share the channel by demand control. The most popular
way to share the channels on demand are based on
"random time division multiple access" (RTDMA) like
Aloha, CSMA or splitting Algorithms. All RTDMA algo-
rithms utilize feedback from the channel. It is essential
that the feedback information is reliable and instan-
taneous, otherwise most of these access algorithms per-
form poorly.

In many situations it is hard to get reliable and
instantaneous feedback, but it is still desirable to share
the channel upon demand. In these cases superimposed
codes can be used to allow more than one user to use the
channel in every moment.

In section 2 of this paper the basic concepts of super-
imposed codes and the channel model are described. The
main topic of this paper is the decoding problem. The de-
coder performs a mapping from a binary sequence into a
set of codewords. This problem is quite different from the
well known problem of decoding an error correcting code.
In section 3 two decoding algorithms are presented. In
section 4 some tests of the robustness of the decoders are
described.
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2. Basic Concepts
Definition Correlation

The correlation, denoted c(x,y), of two binary sequences
x and y of length n is defined as

n
c(x,y) é zxi'yi ’
i=1

where x; and y; are the i:th binary symbols of x and y
respectively.
Definition Superposition of binary sequences

The superposition x V y of two binary sequences x and
y of length n is defined as

xVy 44 = (ZI’ZZ’ ,Zn)

ne

0 ifx, =y, =0
where ;5 { 1 otherwise
The superposition of a set A = { P x® . x™ ) ofn-
dimensional binary sequences is denoted by

fla) & VOV V . V™,

Definition Multiaccess OR Channel

With a multiaccess OR channel we mean a channel
that operates on a set A of binary sequences and produces
an output sequence z equal to the superposition of the
input set, i.e.

z = flA).

This definition implies that the users are block and bit
synchronized.

Definition Disjunctive Code

The binary code C with codeword length n and size T is
a disjunctive code (also called zero false dropping code) of
order m if each subset A ¢ C of size |1AI< m has the
property that for every word x e A we have c¢(x,f(A)) =
wy(x) but for all other words Xe C\A we have c¢(x,f(4)) <
wy(®. The set of all disjunctive codes with parameters n,
m and T is denoted 2 n,m,T ).

The class of superimposed codes consists of the class of
disjunctive codes and the class of uniquely decipherable
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codes. The uniquely decipherable codes are very closely
related to the disjunctive codes and might in some sense
be an easier concept to understand. In spite of this have
we chosen to only use the properties of disjunctive codes
in this paper since this class have stronger properties.
All these concepts were introduced by W.H. Kautz and
R.C. Singleton [1].

From the definition of disjunctive codes we see that
this class of codes can be used to solve the access problem
for a multiaccess OR channel. We know that it is possible
to decode any set A of input codewords sent over the
channel by observing the output sequence as long as the
cardinality of A is smaller than or equal to m.

Definition Constant Weight Code

The binary code C with codeword length n and size
IC1 =T is a constant weight code (shortened CW code) if
all codewords x € C have the same Hamming weight
wy(x) = w. One interesting parameter for the constant
weight codes is the maximum correlation c. The maxi-
mum correlation is defined as

cé n:agx cx,y) ;xyeC

and is related to the minimum distance d by the identity
d=2w-2c .
The set of all constant weight codes with parameters n,
w, ¢ and T is denoted CW n,w,c,T ).

Relation between CW codes and disjunctive codes

M nw,e,T)g D nm=lw/cl-1,T) (1)
where {almeans "smallest integer larger than or equal
to a". Proof can be found in [2].

Definition KS Code

With a KS code we mean a constant weight code con-
structed by concatenation(see [3]). The outer code is a
Reed-Solomon code (RS code) over GF(q) and the inner
code is an orthogonal weight one code (i.e. an element of
the set CMn=q,w=1,¢=0,T=q) ).

The abbreviation KS stands for Kautz-Singleton. This
code construction was first proposed by W.H. Kautz and
R.S. Singleton in their paper [1] from 1964.

Without loss of generality we will define the inner
CMq,1,0,q) code by the following mapping from symbols
from GF(q) to g-dimensional binary vectors :

0> ,1- R B Y (2)

1
0
0 0
0

(X =RiN =N

If cgg is a codeword from an RS code over GF(q), then
with F(epg) we mean the transformation from the RS
codeword into a KS codeword by the mapping given in (2)
for each of the symbols of the RS codeword.
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Lemma

For all sets of integers w, ¢ and q obeying condition i)
and ii) below, there exists a KS code. These KS codes will
be elements of the set CWn=w-q,w,c,T=q"*").

i) q=p°, where p is a prime and s is any positive
integer.
i) 0<c<w<q+1

For proof see reference [4]
Definition

With X$(q,w,c) we mean the set of KS codes with
parameters q, w and c. The integer my =w /¢l- 1 is
referred to as the designed order of the KS code.

XS(q,w,c) , Designed Order

From the relations (1) we know that we can construct
disjunctive codes from CW codes. The KS code construc-
tion is one way to get CW codes. It turned out that among
the class of KS codes there are disjunctive codes with a
relatively short codeword length n for a given code size T
and designed order mg. These results can be found in [2].
It also turned out that the nice and simple structure of
the KS codes makes the decoding problem easier to solve.

3. Decoding Algorithms

With a decoder for superimposed codes we mean the
mapping from the binary superimposed sequence flA)
formed by a multiaccess OR channel into a set of code-
words from a given superimposed code C. Let A denote
the decoder output set. If the decoded set A equals the
transmitted set A we say that the decoding was success-
ful.

Decoding Algorithm 1

Let C be a disjunctive code. The exhaustive search de-
coder operates on the received sequence flA) and outputs
a set of codewords A. A is called the decoded set and is
defined by

Exhaustive Search

A L(xeC | cxflA) = wy®@ ).

It is easy to see that this mapping will always lead to a
successful decoding as long as the size of the set A is less
than or equal to the order of the disjunctive code (this
follows from the definition of disjunctive codes). The
algorithm has to correlate every codeword x € C to the
received sequence f{A), i.e. the decoder has to perform
exactly T comparisons. We will soon present "better" de-
coding algorithms, but first we must define some kind of
measurement of how good an algorithm is.

Definition

Let B(flA)) ¢ C be the set of codewords that a decoding
algorithm D has specified as an intermediate step in the
decoding of the received sequence f{A). It is among the
codewords in the set B(f{A)) that decoder D looks for the

Decoding Complexity
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codewords to form the decoded set A. The decoder chooses
the codewords to form A by correlating each of the ele-
ments in B(fl4)) to the received sequence f{A), or formally
written

A 2 {xe BHA) | o(x,fA) = wy(x)).

With Decoding Complexity DC(f(A)) of decoder D and
received sequence flA) we mean the size of the set B(f(lA)).
With Maximal Decoding Complexity MDC(m,) of decoder
D and order m; we mean

MDC(my) 2 max |B(fA))| such that |Al=m,.

These complexity measurements are quite rough, but
will anyway give some indication of which algorithm is to
be preferred to other algorithms. The measurements can
be used since the suggested algorithms in this paper all
use correlation between codewords and received sequence
as one major step in the decoding.

The exhaustive search decoder has decoding complex-
ity independent of the transmitted set of codewords and

MDC(m,) = DC(fA)) =T VAcCC.

The main algorithm of this paper is the next decoder
algorithm to be described. This algorithm works only for
KS codes and it utilizes the structure from the RS code
and the fact that it is easy to find the "transmitted” ele-
ments from GF(q) in the received sequence. To make
things clearer we give a simple example.

Example

Let Ggg be the generator matrix for an RS code over
GF(7) that together with the inner code mapping (2)
defines a KS code Ckg. We choose

o _ (106543
m"(012345)

CKS e KS(q=7,w=6,c=1) ¢ CWn=42,w=6,c=1,T=49) C
C Dn=42,m=>5,T=49).

By multiplying the generator matrix with a informa-
tion vector i of two GF(7)-symbols, we get the RS codeword
cgs Iffor instants i = (1 3), we get

chd =Gpg-(13)=(13501 4).

This RS codeword can now be transformed into a KS
codeword cll{'g ,

ks = Flegd)

n

]
COOOoCOH-O
ocoOoOHOOO
OHOOOCO
COOOOoOOH
OCOoOOCOoOO-O
oOoOHOOOCCO

Each user has such a codeword matrix. Now let A be
the set of three codewords from three different users. We
will see what happens if they use the multiaccess OR
channel simultaneously. Assume that A =({ cé’s1 ,cé’s
,c,z('g }. The superposition of A is then

000100
111111
100000

fA) =|010010
010001
001001
001000

Here we see that it is easy to find the symbols from
GF(7) in each position of the RS codewords. The first
position of the RS codewords (i.e. the first column of the
superposition) is either one or two. In the second position
of the RS codewords we have one, three and four as GF(7)
symbols, etc. .

Definition

Let flA) be the superposition of a set A of codewords
from a code C € X5(q,w,c). The binary sequence flA) can
be written in a matrix form as a q x w binary matrix.

f, fop - fo

W

f, f, o £
f4) = .11 ‘12 .lw

. £ € (0,1},
f(q-l)l f(q-1)2 f(q-l)w

Let S;(flA)) denote the set of GF(q) symbols defined by
the following mapping

%mADé{xeGF@H%=1} ji=1,2,...,w.
Decoding Algorithm 2
Let C € KS(q,w,c) be defined by the generator matrix

Ggg of a systematic RS code over GF(q). Let B(flA)) be a
set of codewords from the code C. This set is defined by

B(fA)) & (F(Ggg - i)1i =Gy iy ... ig,y) , i €S;fAN ).

Reduced Search

The Reduced Search decoding algorithm is then
defined by

A &(xe BHRA)I c(x,fA) = w).

The decoding complexity of the reduced search decoder
is equal to

DCRA) = IS,(FANI-ISyEAD!- ... 1S, ®ANI.

Thus the MDC(m,) is equal to mo(“l). It is easy to show
that the decoded sets from the reduced search algorithm
and the exhaustive search algorithm will always be
equal.

Example continuation.

The set S;(flA)) is equal to { 1,2 } and the set S (flA)) is
equal to {1,3,4 }. B(QA)) will then be

B(flA)) = { F(cgd), Flckd), Flckd), F(cZd), F(eZd), Fekd)).

The decoding complexity DC(fA)) is equal to 6, and the
maximal decoding complexity MDC( 3 ) is equal to 9. If
we correlate the six codewords of the set B(f(A)) to the
superposition {A) we find that three of these correlate up
to the weight w of the codewords. These three codewords
are the ones chosen by the reduced search decoder and
they are also equal to the transmitted set A. With an
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Size of decoded set A Average
1A 1A | 1Al+1 1A1+2 | MDC DC
6 <1 >0 216 156.2
7 0.999 0.001 343 232.9
8 0.995 0.005 512 3254
9 0.981 0.019 >0 729 437.2
10 0.937 0.061 0.002 1000 558

Table 1. Performance of code C, and the reduced search
decoder.

exhaustive search decoder we would have to compare
flA) to all of the 49 codewords of the code.

4. Decoding Beyond The Designed Order

If the transmitted set A is larger than the designed
order of a KS code used over a multiaccess OR channel,
we are not guarantied that the decoding is successful. It
is quite simple to show that with the decoding algorithms
suggested we will always have the transmitted set A as a
subset of the decoded set A. In many cases it is possible
that the decoding is successful even though the size of A
is larger than the designed order.

We illustrate decoding beyond the designed order by
some examples. The reduced search decoder has been
tested for two different KS codes by computer simula-
tions. Both codes have designed order m, equal to five,
comparable codeword length n=250 and a code size larger
than 10%. Code C, is an element of X5(23,11,2), code C, is
an element of %(5(16,16,3). Below follows a list of the codes
expressed as CW codes :

C, € W 253,11,2,12167)
C, € CW 256,16,3,65536)

The reduced search decoder and the code C, will lead
to an MDC(my) equal to my’, while the MDC(my) for code
C, equals m;",

In table 1 - 2 we will give the results from the simula-
tions for the three given codes. The simulations uses a
random generator to pick the set A. The superposition of
this set is fed to the reduced search decoder. We let the
size of A vary from six up to ten. If the decoded set A has
the same size as the transmitted set A we know that they
are equal and that the decoding was successful. If the
decoded set differed from the transmitted set we know
that the decoded set will be the larger one. In the tables
we give the relative frequency of the size of the decoded set
for a given size of the transmitted set. We also give the
MDC and average DC for each size of the set A. When
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">0" is found in the tables it means that we know that the
decoder gives sets of this size as an output for certain
transmitted sets, but that the occurrence of that event is
not well estimated by the limited number of different
transmitted sets tested ( like in table 1 for 1A1=6 we
found 2 subsets out of 20 000 tested that gave 1A1=7 ). The
blank parts of the tables indicate events that did not oceur
during the simulations, but we do not claim that these
events are impossible.

We can see that code C, is superior to code C, in both
decoding robustness and decoding complexity, but code
C, is larger and can therefore offer a larger populations
of users.

In many systems it is essential to be sure that all de-
coded codewords are correct. For these systems we must
make sure that the maximal number of simultaneous
uﬁers does not exceed the designed order m, of the code
chosen.

In other situations it could be accepted that a few extra
codewords are added to the transmitted information.
Consider a system where the users uses a multiaccess
OR channel to make reservations for another channel,
the data channel. A centralized station detects and de-
codes the information on the multiaccess OR channel.
This centralized station can make a fare and effective
division of the channel capacity by dividing the data
channel among the requesting stations. In such
reservation system it is not so harmful if the centralized
station assigns some channel capacity to some idle sta-
tions, as long as it happens very seldom.

Conclusion

The reduced search decoding algorithm has proven to
give good decoding capability for a reasonable decoding
complexity. The decoding algorithm has performed very
well for situations with larger transmission sets than
designed order.
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Size of decoded set A Average
1Al 1A | 1A1+1 [A1+2 1A1+3 1Al+4 1Al+5 | MDC DC
6 < >0 1296 693.9
7 0.998 0.002 2401 11427
8 0.981 0.018 >0 4096 1732.7
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Table 2. Performance of code C, and the reduced search decoder.
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