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Most database management systems maintain statistics on the underlying relation. One of the
important statistics is that of the “hot items” in the relation: those that appear many times (most
frequently, or more than some threshold). For example, end-biased histograms keep the hot items
as part of the histogram and are used in selectivity estimation. Hot items are used as simple outliers
in data mining, and in anomaly detection in many applications.

We present new methods for dynamically determining the hot items at any time in a relation
which is undergoing deletion operations as well as inserts. Our methods maintain small space data
structures that monitor the transactions on the relation, and, when required, quickly output all
hot items without rescanning the relation in the database. With user-specified probability, all hot
items are correctly reported. Our methods rely on ideas from “group testing.” They are simple to
implement, and have provable quality, space, and time guarantees. Previously known algorithms
for this problem that make similar quality and performance guarantees cannot handle deletions,
and those that handle deletions cannot make similar guarantees without rescanning the database.
Our experiments with real and synthetic data show that our algorithms are accurate in dynamically
tracking the hot items independent of the rate of insertions and deletions.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Data stream processing, approximate query answering.

1. INTRODUCTION

One of the most basic statistics on a database relation is that of which items are
hot, that is, they occur frequently, but the set of hot items can change over time.
This gives a useful measure of the skew of the data. High-biased and end-biased
histograms [Ioannidis and Christodoulakis 1993; Ioannidis and Poosala 1995]
specifically focus on hot items to summarize data distributions for selectivity
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estimation. Iceberg queries generalize the notion of hot items in relation to
aggregate functions over an attribute (or set of attributes) in order to find ag-
gregate values above a specified threshold. Hot item sets in market data are in-
fluential in decision support systems. They also influence caching, load balanc-
ing, and other system performance issues. There are other areas—such as data
warehousing, data mining, and information retrieval—where hot items find
applications. Keeping track of hot items also arises in application domains out-
side traditional databases. For example, in telecommunication networks such
as the Internet and telephone, it is of great importance for network operators to
see meaningful statistics about the operation of the network. Keeping track of
which network addresses are generating the most traffic allows management
of the network, as well as giving a warning sign if this pattern begins to change
unexpectedly. This has been studied extensively in the context of anomaly de-
tection [Barbara et al. 2001; Demaine et al. 2002; Gilbert et al. 2001; Karp et al.
2003].

Our focus in this article is on dynamically maintaining hot items in the
presence of delete and insert transactions. In many of the motivating ap-
plications above, the underlying data distribution changes, sometimes quite
rapidly. Transactional databases undergo insert and delete operations, and
it is important to propagate these changes to the statistics maintained on
the database relations in a timely and accurate manner. In the context of
continuous iceberg queries, this is apt since the iceberg aggregates have
to reflect new data items that modify the underlying relations. In the net-
working application cited above, network connections start and end over
time, and hot items change over time significantly. A thorough discussion
by Gibbons and Matias [Gibbons and Matias 1999] described many appli-
cations for finding hot items and the challenges in maintaining them over
a changing database relation. Also, Fang et al. [1998] presented an influen-
tial case for finding and maintaining hot items and, more generally, iceberg
queries.

Formally, the problem is as follows. We imagine that we observe a sequence
of n transactions on items. Without loss of generality, we assume that the item
identifiers are integers in the range 1 to m. Throughout, we will assume the
RAM model of computation, where all quantities and item identifiers can be
encoded in one machine word. The net occurrence of any item x at time t, de-
noted nx(t), is the number of times it has been inserted less the number of
times it has been deleted. The current frequency of any item is then given by
f x(t) = nx(t)/

∑m
y=1 ny (t). The most frequent item at time t is the one with

f x(t) = max y f y (t). The k most frequent items at time t are those with the k
largest f x(t)’s. We are interested in the related notion of frequent items that
we call hot items. An item x is said to be a hot item if f x(t) > 1/(k + 1), that is,
if it appears a significant fraction of the entire dataset; here k is a parameter.
Clearly, there can be at most k hot items, and there may be none. We assume
throughout that a basic integrity constraint is maintained, that nx(t) for every
item is nonnegative (the number of deletions never exceeds the number of in-
sertions). From now on, we drop the index t, and all occurrences will be treated
as being taken at the current timestep t.
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Our main results are highly efficient, randomized algorithms for main-
taining hot items. There are three important characteristics to consider: the
space used, the time to update the data structure following each transaction
(the update time), and the time to produce the hot items (the query time).
Our algorithms monitor the changes to the data distribution and maintain
O(k log(k) log(m)) space summary data structures. Processing each transaction
takes time O(log(k) log(m)). When queried, we can find all hot items in time
O(k log(k) log(m)) from the summary data structure, without scanning the un-
derlying relation. Additionally, given a user-specified parameter ε, the algo-
rithms return no items whose frequency is less than 1

k+1 − ε. More formally,
for any user-specified probability δ, the algorithm succeeds with probability at
least 1 − δ, as is standard in randomized algorithms.

Since k is typically very small compared to the size of the data, our results
here maintain small summary data structures—significantly sublinear in the
dataset size—and accurately detect hot items at any time in the presence of the
full repertoire of inserts and deletes. Despite extensive work on this problem
(which will be summarized in Section 2), most of the prior work with comparable
guarantees works only for insert-only transactions. Prior work that deals with
the fully general situation where both inserts and deletes are present cannot
provide the guarantees we give, without rescanning the underlying database
relation. Thus, our result is the first provable result for maintaining hot items,
with small space.

A common approach to summarizing data distribution or finding hot items
relies on keeping samples on the underlying database relation. These samples—
deterministic or randomized—can be updated if data items are only inserted.
Samples can then faithfully represent the underlying data relation. However, in
the presence of deletes, in particular cases where the data distribution changes
significantly over time, samples cannot be maintained without rescanning the
database relation. For example, the entire set of sampled values may get erased
from the relation by a sequence of deletes if there are very many deletions.

We present two different approaches for solving the problem. Our first result
here relies on random sampling to construct groups (O(k log(k)) sets) of items,
but we further group such sets deterministically into a small number (log m) of
subgroups. Our summary data structure comprises a sum of the items in each
group and subgroup. The grouping is based on error-correcting codes, and the
entire procedure may be thought of as “group testing,” which is described in
more detail later. The second result makes use of log m small space “sketches”
to act as oracles to approximate the count of any item or certain groups of
items, and uses an intuitive divide and conquer approach to find the hot items.
This is a different style of group testing, and the two methods give different
guarantees for the problem. We also give additional time and space tradeoffs
for both methods, where the time to process each update can be reduced by
constant factors, at the cost of devoting extra space to the data structures. We
perform a set of experiments on large datasets, which allow us to characterize
further the advantages of each approach. We also see that, in practice, the
methods given outperform their theoretical guarantees, and can operate very
quickly using a small amount of space but still give almost perfect results.
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Once the hot items have been identified, a secondary problem is to approxi-
mate the counts nx of these items. We do not focus on this problem, since there
are many existing solutions which can be applied to the problem of, given x,
estimate nx , in the presence of insertions and deletions [Gilbert et al. 2002b;
Charikar et al. 2002; Cormode and Muthukrishnan 2004a]. However, we ob-
serve that for the solutions we propose, no additional storage is needed, since the
information needed to make estimates of the count of items is already present
in the data structures that we propose. We will show how to estimate the counts
of individual items, but we do not give experimental results since experiments
for these estimators can be found in prior work.

The rest of the article is organized as follows. In Section 2, we summarize pre-
vious work, which is rather extensive. In Section 3 and Section 4 we present our
algorithms and prove their guarantees, and compare the different approaches
in Section 5. In Section 6, we present an experimental study of our algorithms
using synthetic data as well as real network data addressing the application
domain cited earlier and show that our algorithms are effective and practical.
Conclusions and closing remarks are given in Section 7.

2. PRELIMINARIES

If one is allowed O(m) space, then a simple heap data structure will process each
insert or delete operation in O(log m) time and find the hot items in O(k log m)
time in the worst case [Aho et al. 1987]. Our focus here is on algorithms that
only maintain a summary data structure, that is, one that uses sublinear space
as it monitors inserts and deletes to the data.

In a fundamental article, Alon et al. [1996] proved that estimating
f ∗(t) = maxx fx(t) is impossible with o(m) space. Estimating the k most
frequent items is at least as hard. Hence, research in this area studies related,
relaxed versions of the problems. For example, finding hot items, that is, items
each of which has frequency above 1/(k + 1), is one such related problem. The
lower bound of Alon et al. [1996] does not directly apply to this problem. But a
simple information theory argument suffices to show that solving this problem
exactly requires the storage of a large amount of information if we give a
strong guarantee about the output. We provide the simple argument here for
completeness.

LEMMA 2.1. Any algorithm which guarantees to find all and only items
which have frequency greater than 1/(k + 1) must store �(m) bits.

PROOF. Consider a set S ⊆ {1 · · · m}. Transform S into a sequence of n = |S|
insertions of items by including x exactly once if and only if x ∈ S. Now process
these transactions with the proposed algorithm. We can then use the algorithm
to extract whether x ∈ S or not: for some x, insert �n/k� copies of x. Suppose
x �∈ S; then the frequency of x is �n/k�/(n + �n/k�) = �n/k�/�n(k + 1)/k� ≤
�n/k�/(k+1)�n/k� = 1/(k+1), and so x will not be output. On the other hand, if
x ∈ S then (�n/k�+1)/(n+�n/k�) > (n/k)/(n+n/k) = 1/(k +1) and so x will be
output. Hence, we can extract the set S, and so the space stored must be �(m)
since, by an information theoretic argument, the space to store an arbitrary
subset S is m bits.
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Table I. Summary of Previous Results on Insert-Only Methods (LV (Las
Vegas) and MC (Monte Carlo) are types of randomized algorithms. See

Motwani and Raghavan [1995] for details.)

Algorithm Type Time per item Space

Lossy Counting Deterministic O(log(n/k)) �(k log(n/k))
[Manku and amortized
Motwani 2002]
Misra-Gries Deterministic O(log k) amortized O(k)
[Misra and
Gries 1982]
Frequent Randomized (LV) O(1) expected O(k)
[Demaine et al.
2002]
Count Sketch Approximate, O(log(1/δ)) �(k/ε2 log n)
[Charikar et al. randomized (MC)
2002]

This also applies to randomized algorithms. Any algorithm which guarantees
to output all hot items with probability at least 1 − δ, for some constant δ,
must also use �(m) space. This follows by observing that the above reduction
corresponds to the Index problem in communication complexity [Kushilevitz
and Nisan 1997], which has one-round communication complexity �(m). If the
data structure stored was o(m) in size, then it could be sent as a message, and
this would contradict the communication complexity lower bound.

This argument suggests that, if we are to use less than �(m) space, then
we must sometimes output items which are not hot, since we will endeavor
to include every hot item in the output. In our guarantees, we will instead
guarantee that (with arbitrary probability) all hot items are output and no
items which are far from being hot will be output. That is, no item which has
frequency less than 1

k+1 − ε will be output, for some user-specified parameter ε.

2.1 Prior Work

Finding which items are hot is a problem that has a history stretching back
over two decades. We divide the prior results into groups: those which find
frequent items by keeping counts of particular items; those which use a filter to
test each item; and those which accommodate deletions in a heuristic fashion.
Each of these approaches is explained in detail below. The most relevant works
mentioned are summarized in Table I.

2.1.1 Insert-Only Algorithms with Item Counts. The earliest work on find-
ing frequent items considered the problem of finding an item which occurred
more than half of the time [Boyer and Moore 1982; Fischer and Salzberg 1982].
This procedure can be viewed as a two-pass algorithm: after one pass over the
data, a candidate is found, which is guaranteed to be the majority element if
any such element exists. A second pass verifies the frequency of the item. Only
a constant amount of space is used. A natural generalization of this method to
find items which occur more than n/k times in two passes was given by Misra
and Gries [1982]. The total time to process n items is O(n log k), with space O(k)
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(recall that we assume throughout that any item label or counter can be stored
in constant space). In the Misra and Gries implementation, the time to process
any item is bounded by O(k log k) but this time is only incurred O(n/k) times,
giving the amortized time bound. The first pass generates a set of at most k
candidates for the hot items, and the second pass computes the frequency of
each candidate exactly, so the infrequent items can be pruned out. It is possible
to drop the second pass, in which case at most k items will be output, among
which all hot items are guaranteed to be included.

Recent interest in processing data streams, which can be viewed as one-
pass algorithms with limited storage, has reopened interest in this problem
(see surveys such as those by Muthukrishnan [2003] and Garofalakis et al.
[2002]). Several authors [Demaine et al. 2002; Karp et al. 2003] have redis-
covered the algorithm of Misra and Gries [1982], and using more sophisticated
data structures have been able to process each item in expected O(1) time while
still keeping only O(k) space. As before, the output guarantees to include all hot
items, but some others will be included in the output, about which no guarantee
of frequency is made. A similar idea was used by Manku and Motwani [2002]
with the stronger guarantee of finding all items which occur more than n/k
times and not reporting any that occur fewer than n( 1

k − ε) times. The space
required is bounded by O( 1

ε
log εn)—note that ε ≤ 1

k and so the space is effec-
tively �(k log(n/k)). If we set ε = c

k for some small c then it requires time at
worst O(k log(n/k)) per item, but this occurs only every 1/k items, and so the
total time is O(n log(n/k)). Another recent contribution was that of Babcock
and Olston [2003]. This is not immediately comparable to our work, since their
focus was on maintaining the top-k items in a distributed environment, and
the goal was to minimize communication. Counts of all items were maintained
exactly at each location, so the memory space was �(m). All of these mentioned
algorithms are deterministic in their operation: the output is solely a function
of the input stream and the parameter k.

All the methods discussed thus far have certain features in common: in
particular, they all hold some number of counters, each of which counts the
number of times a single item is seen in the sequence. These counters are
incremented whenever their corresponding item is observed, and are decre-
mented or reallocated under certain circumstances. As a consequence, it is
not possible to directly adapt these algorithms to the dynamic case where
items are deleted as well as inserted. We would like the data structure to
have the same contents following the deletion of an item, as if that item had
never been inserted. But it is possible to insert an item so that it takes up
a counter, and then later delete it: it is not possible to decide which item
would otherwise have taken up this counter. So the state of the algorithm
will be different from that reached without the insertions and deletions of the
item.

2.1.2 Insert-Only Algorithms with Filters. An alternative approach to find-
ing frequent items is based on constructing a data structure which can be
used as a filter. This has been suggested several times, with different ways
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to construct such filters being suggested. The general procedure is as follows:
as each item arrives, the filter is updated to reflect this arrival and then the
filter is used to test whether this item is above the threshold. If it is, then it is
retained (for example, in a heap data structure). At output time, all retained
items can be rechecked with the filter, and those which pass the filter are out-
put. An important point to note is that, in the presence of deletions, this filter
approach cannot work directly, since it relies on testing each item as it arrives.
In some cases, the filter can be updated to reflect item deletions. However, it
is important to realize that this does not allow the current hot items to be
found from this: after some deletions, items seen in the past may become hot
items. But the filter method can only pick up items which are hot when they
reach the filter; it cannot retrieve items from the past which have since become
frequent.

The earliest filter method appears to be due to Fang et al. [1998], where it was
used in the context of iceberg queries. The authors advocated a second pass over
the data to count exactly those items which passed the filter. An article which
has stimulated interest in finding frequent items in the networking community
was by Estan and Varghese [2002], who proposed a variety of filters to detect
network addresses which are responsible for a large fraction of the bandwidth.
In both these articles, the analysis assumed very strong hash functions which
exhibit “perfect” randomness. An important recent result was that of Charikar
et al. [2002], who gave a filter-based method using only limited (pairwise) inde-
pendent hash functions. These were used to give an algorithm to find k items
whose frequency was at least (1−ε) times the frequency of the kth most frequent
item, with probability 1−δ. If we wish to only find items with count greater than
n/(k +1) then the space used is O( k

ε2 log(n/δ)). A heap of frequent items is kept,
and if the current items exceed the threshold, then the least frequent item in
the heap is ejected, and the current item inserted. We shall return to this work
later in Section 4.1, when we adapt and use the filter as the basis of a more ad-
vanced algorithm to find hot items. We will describe the algorithm in full detail,
and give an analysis of how it can be used as part of a solution to the hot items
problem.

2.1.3 Insert and Delete Algorithms. Previous work that studied hot items
in the presence of both of inserts and deletes is sparse [Gibbons and Matias
1998, 1999]. These articles have proposed methods to maintain a sample of
items and count of the number of times each item occurs in the data set, and
focused on the harder problem of monitoring the k most frequent items. These
methods work provably for the insert-only case, but provide no guarantees
for the fully dynamic case with deletions. However, the authors studied how
effective these samples are for the deletion case through experiments. Gibbons
et al. [1997] presented methods to maintain various histograms in the presence
of inserts and deletes using a “backing sample,” but these methods too need
access to large portion of the data periodically in the presence of deletes.

A recent theoretical work presented provable algorithms for maintaining
histograms with guaranteed accuracy and small space [Gilbert et al. 2002a].
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The methods in this article can yield algorithms for maintaining hot items,
but the methods are rather sophisticated and use powerful range summable
random variables, resulting in k logO(1) n space and time algorithms where the
O(1) term is quite large. We draw some inspiration from the methods in this
article—we will use ideas similar to the “sketching” developed in Gilbert et al.
[2002a], but our overall methods are much simpler and more efficient. Finally,
recent work in maintaining quantiles [Gilbert et al. 2002b] is similar to ours
since it keeps the sum of items in random subsets. However, our result is, of
necessity, more involved, involving a random group generation phase based on
group testing, which was not needed in [Gilbert et al. 2002b]. Also, once such
groups are generated, we maintain sums of deterministic sets (in contrast to
the random sets as in Gilbert et al. [2002b]), given again by error correcting
codes. Finally, our algorithm is more efficient than the �(k2 log2 m) space and
time algorithms given in Gilbert et al. [2002b].

2.2 Our Approach

We propose some new approaches to this problem, based on ideas from group
testing and error-correcting codes. Our algorithms depend on ideas drawn from
group testing [Du and Hwang 1993]. The idea of group testing is to arrange a
number of tests, each of which groups together a number of the m items in order
to find up to k items which test “positive.” Each test reports either “positive”
or “negative” to indicate whether there is a positive item among the group,
or whether none of them is positive. The familiar puzzle of how to use a pan
balance to find one “positive” coin among n good coins, of equal weight, where
the positive coin is heavier than the good coins, is an example of group testing.
The goal is to minimize the number of tests, where each test in the group testing
is applied to a subset of the items (a group). Our goal of finding up to k hot items
can be neatly mapped onto an instance of group testing: the hot items are the
positive items we want to find.

Group testing methods can be categorized as adaptive or nonadaptive. In
adaptive group testing, the members of the next set of groups to test can be
specified after learning the outcome of the previous tests. Each set of tests is
called a round, and adaptive group testing methods are evaluated in terms of
the number of rounds, as well as the number of tests, required. By contrast,
nonadaptive group testing has only one round, and so all groups must be chosen
without any information about which groups tested positive. We shall give two
main solutions for finding frequent items, one based on nonadaptive and the
other on adaptive group testing. For each, we must describe how the groups
are formed from the items, and how the tests are performed. An additional
challenge is that our tests here are not perfect, but have some chance of failure
(reporting the wrong result). We will prove that, in spite of this, our algorithms
can guarantee finding all hot items with high probability. The algorithms we
propose differ in the nature of the guarantees that they give, and result in
different time and space guarantees. In our experimental studies, we were
able to explore these differences in more detail, and to describe the different
situations which each of these algorithms is best suited to.
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3. NONADAPTIVE GROUP TESTING

Our general procedure is as follows: we divide all items up into several (over-
lapping) groups. For each transaction on an item x, we determine which groups
it is included in (denoting these G(x)). Each group is associated with a counter,
and for an insertion we increment the counter for all G(x); for a deletion, we
correspondingly decrement these counters. The test will be whether the count
for a subset exceeds a certain threshold: this is evidence that there may a hot
item within the set. Identifying the hot items is a matter of putting together
the information from the different tests to find an overall answer.

There are a number of challenges involved in following this approach:
(1) bounding the number of groups required; (2) finding a concise represen-
tation of the groups; and (3) giving an efficient way to go from the results of
tests to the set of hot items. We shall be able to address all of these issues.
To give greater insight into this problem, we first give a simple solution to the
k = 1 case, which is to find an item that occurs more than half of the time.
Later, we will consider the more general problem of finding k > 1 hot items,
which will use the procedure given below as a subroutine.

3.1 Finding the Majority Item

If an item occurs more than half the time, then it is said to be the majority item.
While finding the majority item is mostly straightforward in the insertions-
only case (it is solved in constant space and constant time per insertion by the
algorithms of Boyer and Moore [1982] and Fischer and Salzberg [1982]), in the
dynamic case, it looks less trivial. We might have identified an item which is
very frequent, only for this item to be the subject of a large number of deletions,
meaning that some other item is now in the majority.

We give an algorithm to solve this problem by keeping 	log2 m
+ 1 counters.
The first counter, c0, merely keeps track of n(t) = ∑

x nx(t), which is how many
items are “live”: in other words, we increment this counter on every insert, and
decrement it on every deletion. The remaining counters are denoted c1 · · · c j .
We make use of the function bit(x, j ), which reports the value of the j th bit
of the binary representation of the integer x; and gt(x, y), which returns 1 if
x > y and 0 otherwise. Our procedures are as follows:

Insertion of item x: increment each counter c j such that bit(x, j ) = 1 in time
O(log m).
Deletion of x: decrement each counter c j such that bit(x, j ) = 1 in time O(log m).
Search: if there is a majority, then it is given by

∑log2 m
j=1 2 j gt(c j , n/2), computed

in time O(log m).

The arrangement of the counters is shown graphically in Figure 1. The two
procedures of this method—one to process updates, another to identify the ma-
jority element—are given in Figure 2 (where trans denotes whether the trans-
action is an insertion or a deletion).

THEOREM 3.1. The algorithm in Figure 2 finds a majority item if there is one
with time O(log m) per update and search operation.
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Fig. 1. Each test includes half of the range [1 · · · m], corresponding to the binary representation
of values.

Fig. 2. Algorithm to find the majority element in a sequence of update.

PROOF. We make two observations: first, that the state of the data structure
is equivalent to that following a sequence of c0 insertions only, and second, that
in the insertions only case, this algorithm identifies a majority element. For the
first point, it suffices to observe that the effect of each deletion of an element x is
to precisely cancel out the effect of a prior insertion of that element. Following
a sequence of I insertions and D deletions, the state is precisely that obtained
if there had been I − D = n insertions only.

The second part relies on the fact that if there is an item whose count is
greater than n/2 (that is, it is in the majority), then for any way of dividing
the elements into two sets, the set containing the majority element will have
weight greater than n/2, and the other will have weight less than n/2. The tests
are arranged so that each test determines the value of a particular bit of the
index of the majority element. For example, the first test determines whether
its index is even or odd by dividing on the basis of the least significant bit. The
log m tests with binary outcomes are necessary and sufficient to determine the
index of the majority element.

Note that this algorithm is completely deterministic, and guarantees always
to find the majority item if there is one. If there is no such item, then still some
item will be returned, and it will not be possible to distinguish the difference
based on the information stored. The simple structure of the tests is standard
in group testing, and also resembles the structure of the Hamming single error-
correcting code.

3.2 Finding k Hot Items

When we perform a test based on comparing the count of items in two buck-
ets, we extract from this a single bit of information: whether there is a hot item
present in the set or not. This leads immediately to a lower bound on the number
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of tests necessary: to locate k items among m locations requires log2(m
k ) ≥

k log(m/k) bits.
We make the following observation: suppose we selected a group of items

to monitor which happened to contain exactly one hot item. Then we could
apply the algorithm of Section 3.1 to this group (splitting it into a further log m
subsets) and, by keeping log m counters, identify which item was the hot one. We
would simply have to “weigh” each bucket, and, providing that the total weight
of other items in the group were not too much, the hot item would always be in
the heavier of the two buckets.

We could choose each group as a completely random subset of the items, and
apply the algorithm for finding a single majority item described at the start of
this section. But for a completely random selection of items then in order to store
the description of the groups, we would have to list every member of every group
explicitly. This would consume a very large amount of space, at least would be
linear in m. So instead, we shall look for a concise way to describe each group,
so that given an item we can quickly determine which groups it is a member of.
We shall make use of hash functions, which will map items onto the integers
1 · · · W , for some W that we shall specify later. Each group will consist of all
items which are mapped to the same value by a particular hash function. If the
hash functions have a concise representation, then this describes the groups in
a concise fashion. It is important to understand exactly how strong the hash
functions need to be to guarantee good results.

3.2.1 Hash Functions. We will make use of universal hash functions de-
rived from those given by Carter and Wegman [1979]. We define a family of
hash functions fa,b as follows: fix a prime P > m > W , and draw a and b
uniformly at random in the range [0 · · · P − 1]. Then set

fa,b(x) = ((ax + b mod P ) mod W ).

Using members of this family of functions will define our groups. Each hash
function is defined by a and b, which are integers less than P . P itself is chosen
to be O(m), and so the space required to represent each hash function is O(log m)
bits.

Fact 3.2 (Proposition 7 of Carter and Wegman [1979]). Over all choices
of a and b, for x �= y , Pr[ fa,b(x) = fa,b( y)] ≤ 1/W .

We can now describe the data structures that we will keep in order to allow
us to find up to k hot items.

3.2.2 Nonadaptive Group Testing Data Structure. The group testing data
structure is initialized with two parameters W and T , and has three
components:

— a three-dimensional array of counters c, of size T × W × (log(m) + 1);
— T universal hash functions h, defined by a[1 · · · T ] and b[1 · · · T ] so hi =

fa[i],b[i];
— the count n of the current number of items.
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Fig. 3. Procedures for finding hot items using nonadaptive group testing.

The data structure is initialized by setting all the counters, c[1][0][0] to
c[T ][W − 1][log m], to zero, and by choosing values for each entry of a and b
uniformly at random in the range [0 · · · P −1]. The space used by the data struc-
ture is O(T W log m). We shall specify values for W and T later. We will write
hi to indicate the ith hash function, so hi(x) = a[i] ∗ x + b[i] mod P mod W . Let
Gi, j = {x|hi(x) = j } be the (i, j )th group. We will use c[i][ j ][0] to keep the count
of the current number of items within the Gi, j . For each such group, we shall also
keep counts for log m subgroups, defined as Gi, j ,l = {x|x ∈ Gi, j ∧ bit(x, l ) = 1}.
These correspond to the groups we kept for finding a majority item. We will use
c[i][ j ][l ] to keep count of the current number of items within subgroup Gi, j ,l .
This leads to the following update procedure.

3.2.3 Update Procedure. Our procedure in processing an input item x is
to determine which groups it belongs to, and to update the log m counters for
each of these groups based on the bit representation of x in exactly the same
way as the algorithm for finding a majority element. If the transaction is an
insertion, then we add one to the appropriate counters, and subtract one for
a deletion. The current count of items is also maintained. This procedure is
shown in pseudocode as PROCESSITEM (x, trans, T , W ) in Figure 3. The time to
perform an update is the time taken to compute the T hash functions, and to
modify O(T log m) counters.

At any point, we can search the data structure to find hot items. Various
checks are made to avoid including in the output any items which are not hot.
In group testing terms, the test that we will use is whether the count for a
group or subgroup exceeds the threshold needed for an item to be hot, which
is n/(k + 1). Note that any group which contains a hot item will pass this test,
but that it is possible that a group which does not contain a hot item can also
pass this test. We will later analyze the probability of such an event, and show
that it can be made quite small.
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3.2.4 Search Procedure. For each group, we will use the information about
the group and its subgroups to test whether there is a hot item in the group,
and if so, to extract the identity of the hot item. We process each group Gi, j in
turn. First, we test whether there can be a hot item in the group. If c[i][ j ][0] ≤
n/(k + 1) then there cannot be a hot item in the group, and so the group is
rejected. Then we look at the count of every subgroup, compared to the count
of the whole group, and consider the four possible cases:

c[i][ j ][l ] > n
k+1 ? c[i][ j ][0] − c[i][ j ][l ] > n

k+1 ? Conclusion
No No Cannot be a hot item in the group,

so reject group
No Yes If a hot item x is in group,

then bit(l , x) = 0
Yes No If a hot item x is in group,

then bit(l , x) = 1
Yes Yes Not possible to identify the hot item,

so reject group

If the group is not rejected, then the identity of the candidate hot item, x,
can be recovered from the tests. Some verification of the hot items can then be
carried out.

— The candidate item must belong to the group it was found in, so check hi(x) =
j .

— If the candidate item is hot, then every group it belongs in should be above
the threshold, so check that c[i][hi(x)][0] > n/(k + 1) for all i.

The time to find all hot items is O(T 2W log m). There can be at most T W can-
didates returned, and checking them all takes worst-case time O(T ) each. The
full algorithms are illustrated in Figure 3. We now show that for appropriate
choices of T and W we can first ensure that all hot items are found, and second
ensure that no items are output which are far from being hot.

LEMMA 3.3. Choosing W ≥ 2k and T = log2( k
δ
) for a user chosen parameter

δ ensures that the probability of all hot items being output is at least 1 − δ.

PROOF. Consider each hot item x, in turn, remembering that there are at
most k of these. Using Fact 3.2 about the hash functions, then the probability
for any other item falling into the same group as x under the ith hash function
is given by 1/W ≤ 1

2k . Using linearity of expectation, then the expectation of
the total frequency of other items which land in the same group as item x is

E

( ∑
y �=x,hi ( y)=hi (x)

f y

)
=

∑
y �=x

f y · Pr[hi( y) = hi(x)] ≤
∑
y �=x

f y

2k
≤ 1 − f x

2k
≤ 1

2(k + 1)
.

(1)

Our test cannot fail if the total weight of other items which fall in the same
bucket is less than 1/(k + 1). This is because each time we compare the counts
of items in the group we conclude that the hot item is in the half with greater
count. If the total frequency of other items is less than 1/(k + 1), then the hot
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item will always be in the heavier half, and so, using a similar argument to
that for the majority case, we will be able to read off the index of the hot item
using the results of log m groups. The probability of failing due to the weight
of other items in the same bucket being more than 1/(k + 1) is bounded by
the Markov inequality as 1

2 , since this is at least twice the expectation. So
the probability that we fail on every one of the T independent tests is less
than 1

2
log(k/δ) = δ/k. Using the union bound, then, over all hot items, the prob-

ability of any of them failing is less than δ, and so each hot item is output with
probability at least 1 − δ.

LEMMA 3.4. For any user specified fraction ε ≤ 1
k+1 , if we set W ≥ 2

ε

and T = log2(k/δ), then the probability of outputting any item y with f y <
1

k+1 − ε is at most δ/k.

PROOF. This lemma follows because of the checks we perform on every item
before outputting it. Given a candidate item, we check that every group it is a
member of is above the threshold. Suppose the frequency of the item y is less
than ( 1

k+1 − ε). Then the frequency of items which fall in the same group under
hash function i must be at least ε, to push the count for the group over the
threshold for the test to return positive. By the same argument as in the above
lemma, the probability of this event is at most 1

2 . So the probability that this

occurs in all groups is bounded by 1
2

log k/δ = δ/k.

Putting these two lemmas together allows us to state our main result on
nonadaptive group testing:

THEOREM 3.5. With probability at least 1 − δ, then we can find all hot items
whose frequency is more than 1

k+1 , and, given ε ≤ 1
k+1 , with probability at least

1 − δ/k each item which is output has frequency at least 1
k+1 − ε using space

O( 1
ε

log(m) log(k/δ)) words. Each update takes time O(log(m) log(k/δ)). Queries
take time no more than O( 1

ε
log2(k/δ) log m).

PROOF. This follows by setting W = 2
ε

and T = log(k/δ), and applying the
above two lemmas. To process an item, we compute T hash functions, and
update T log m counters, giving the time cost. To extract the hot items involves
a scan over the data structure in linear time, plus a check on each hot item
found that takes time at most O(T ), giving total time O(T 2W log m).

Next, we describe additional properties of our method which imply its sta-
bility and resilience.

COROLLARY 3.6. The data structure created with T = log(k/δ) can be used
to find hot items with parameter k′ for any k′ < k with the same probability of
success 1 − δ.

PROOF. Observe in Lemma 3.3 that, to find k′ hot items, we required W ≥
2k′. If we use a data structure created with W ≥ 2k, then W ≥ 2k > 2k′,
and so the data structure can be used for any value of k less than the value it
was created for. Similarly, we have more tests than we need, which can only
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help the accuracy of the group testing. All other aspects of the data structure
are identical. So, if we run the procedure with a higher threshold, then with
probability at least 1 − δ, we will find the hot items.

This property means that we can fix k to be as large as we want, and are then
able to find hot items with any frequency greater than 1/(k + 1) determined at
query time.

COROLLARY 3.7. The output of the algorithm is the same for any reordering
of the input data.

PROOF. During any insertion or deletion, the algorithm takes the same ac-
tion and does not inspect the contents of the memory. It just adds or subtracts
values from the counters, as a function solely of the item value. Since addition
and subtraction commute, the corollary follows.

3.2.5 Estimation of Count of Hot Items. Once the hot items have been iden-
tified, we may wish to additionally estimate the count, nx , of each of these items.
One approach would be to keep a second data structure enabling the estimation
of the counts to be made. Such data structures are typically compact, fast to
update, and give accurate answers for items whose count is large, that is, hot
items [Gilbert et al. 2002b; Charikar et al. 2002; Cormode and Muthukrishnan
2004a]. However, note that the data structure that we keep embeds a structure
that allows us to compute an estimate of the weight of each item [Cormode and
Muthukrishnan 2004a].

COROLLARY 3.8. Computing mini c[i][hi(x)][0] gives a good estimate for nx
with probability at least 1 − (δ/k).

PROOF. This follows from the proofs of Lemma 3.3 and Lemma 3.4. Each
estimate c[i][hi(x)][0] = nx + ∑

y �=x,hi (x)=hi ( y) ny . But by Lemma 3.3, this addi-
tional noise is bounded by εn with constant probability at least 1

2 , as shown in
Equation (1). Taking the minimum over all estimates amplifies this probability
to 1 − (δ/k).

3.3 Time-Space Tradeoff

In certain situations when transactions are occurring at very high rates, it is
vital to make the update procedure as fast as possible. One of the drawbacks of
the current procedure is that it depends on the product of T and log m, which
can be slow for items with large identifiers. For reducing the time dependency
on T , note that the data structure is intrinsically parallelizable: each of the
T hash functions can be applied in parallel, and the relevant counts modified
separately. In the experimental section we will show that good results are ob-
served even for very small values of T ; therefore, the main bottleneck is the
dependence on log m.

The dependency on log m arises because we need to recover the identifier
of each hot item, and we do this 1 bit at a time. Our observation here is that
we can find the identifier in different units, for example, 1 byte at a time, at
the expense of extra space usage. Formally, define dig(x, i, b) to be the ith digit
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in the integer x when x is written in base b ≥ 2. Within each group, we keep
(b − 1) × logb m subgroups: the i, j th subgroup counts how many items have
dig(x, i, b) = j for i = 1 · · · logb m and j = 1 · · · b − 1. We do not need to keep a
subgroup for j = 0 since this count can be computed from the other counts for
that group. Note that b = 2 corresponds to the binary case discussed already,
and b = m corresponds to the simple strategy of keeping a count for every item.

THEOREM 3.9. Using the above procedure, with probability at least 1−δ, then
we can find all hot items whose frequency is more than 1

k+1 , and with probability
at least 1 − (δ/k), each item which is output has frequency at least 1

k+1 − ε using
space O( b

ε
logb(m) log(k/δ)) words. Each update takes time O(logb(m) log(k/δ))

and queries take O( b
ε

logb(m) log2(k/δ)) time.

PROOF. Each subgroup now allows us to read off one digit in the base-b
representation of the identifier of any hot item x. Lemma 3.3 applies to this
situation just as before, as does Lemma 3.4. This leads us to set W and T as
before. We have to update one counter for each digit in the base b representation
of each item for each transaction, which corresponds to logb m counters per test,
giving an update time of O(T logb(m)). The space required is for the counters
to record the subgroups of T W groups, and there are (b − 1) logb(m) subgroups
of every group, giving the space bounds.

For efficient implementations, it will generally be preferable to choose b to
be a power of 2, since this allows efficient computation of indices using bit-
level operations (shifts and masks). The space cost can be relatively high for
speedups: choosing b = 28 means that each update operation is eight times
faster than for b = 2, but requires 32 times more space. A more modest value of
b may strike the right balance: choosing b = 4 doubles the update speed, while
the space required increases by 50%. We investigate the effects of this tradeoff
further in our experimental study.

4. ADAPTIVE GROUP TESTING

The more flexible model of adaptive group testing allows conceptually simpler
choices of groups, although the data structures required to support the tests
become more involved. The idea is a very natural “divide-and-conquer” style
approach, and as such may seem straightforward. We give the full details here
to emphasize the relation between viewing this as an adaptive group testing
procedure and the above nonadaptive group testing approach. Also, this method
does not seem to have been published before, so we give the full description for
completeness.

Consider again the problem of finding a majority item, assuming that one
exists. Then an adaptive group testing strategy is as follows: test whether
the count of all items in the range {1 · · · m/2} is above n/2, and also whether
the count of all items in the range {m/2+1 · · · m} is over the threshold. Recurse
on whichever half contains more than half the items, and the majority item is
found in 	log2 m
 rounds.

The question is: how to support this adaptive strategy as transactions are
seen? As counts increase and decrease, we do not know in advance which queries
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Fig. 4. Adaptive group testing algorithms.

will be posed, and so the solution seems to be to keep counts for every test that
could be posed—but there are �(m) such tests, which is too much to store. The
solution comes by observing that we do not need to know counts exactly, but
rather it suffices to use approximate counts, and these can be supported using
a data structure that is much smaller, with size dependent on the quality of
approximation. We shall make use of the fact that the range of items can be
mapped onto the integers 1 · · · m. We will initially describe an adaptive group
testing method in terms of an oracle that is assumed to give exact answers, and
then show how this oracle can be realized approximately.

Definition 4.1. A dyadic range sum oracle returns the (approximate) sum
of the counts of items in the range l = (i2 j +1) · · · r = (i +1)2 j for 0 ≤ j ≤ log m
and 0 ≤ i ≤ m/2 j .

Using such an oracle, which reflects the effect of items arriving and departing,
it is possible to find all the hot items, with the following binary search divide-
and-conquer procedure. For simplicity of presentation, we assume that m, the
range of items, is a power of 2. Beginning with the full range, recursively split in
two. If the total count of any range is less than n/(k+1), then do not split further.
Else, continue splitting until a hot item is found. It follows that O(k log(m/k))
calls are made to the oracle. The procedure is presented as ADAPTIVEGROUPTEST

on the right in Figure 4.
In order to implement dyadic range sum oracles, define an approximate count

oracle to return the (approximate) count of the item x. A dyadic range sum oracle
can be implemented using j = 0 · · · log m approximate count oracles: for each
item in the stream x, insert � x

2 j � into the j th approximate count oracle, for all j .
Recent work has given several methods of implementing the approximate count
oracle, which can be updated to reflect the arrival or departure of any item. We
now list three examples of these and give their space and update time bounds:

— The “tug of war sketch” technique of Alon et al. [1999] uses space and time
O( 1

ε2 log 1
δ
) to approximate any count up to εn with a probability of at least

1 − δ.
— The method of random subset sums described in Gilbert et al. [2002b] uses

space and time O( 1
ε2 log 1

δ
).

— The method of Charikar et al. [2002]. builds a structure which can be used
to approximate the count of any item correct upto εn in space O( 1

ε2 log 1
δ
) and

time per update O(log 1
δ
).
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The fastest of these methods is that of Charikar et al. [2002], and so we shall
adopt this as the basis of our adaptive group testing solution. In the next section
we describe and analyze the data structure and algorithms for our purpose of
finding hot items.

4.1 CCFC Count Sketch

We shall briefly describe and analyze the CCFC count sketch.1 This is a different
and shorter analysis compared to that given in Charikar et al. [2002], since here
the goal is to estimate each count to within an error in terms of the total count
of all items rather than in the count of the kth most frequent item, as was the
case in the original article.

4.1.1 Data Structure. The data structure used consists of a table of coun-
ters t, with width W and height T , initialized to zero. We also keep T pairs of
universal hash functions: h1 · · · hT , which map items onto 1 · · · W , and g1 · · · gT ,
which map items onto {−1, +1}.

4.1.2 Update Routine. When an insert transaction of item x occurs, we
update t[i][hi(x)] ← t[i][hi(x)]+ gi[x] for all i = 1 · · · T . For a delete transaction,
we update t[i][hi(x)] ← t[i][hi(x)] − gi[x] for all i = 1 · · · T .

4.1.3 Estimation. To estimate the count of x, compute mediani(t[i][hi(x)] ·
gi(x)).

4.1.4 Analysis. Use the random variable X i to denote t[i][hi(x)]· gi(x). The
expectation of each estimate is

E(X i) = nx +
∑
y �=x

Pr[hi( y) = hi(x)] · (Pr[gi(x) = gi( y)] − Pr[gi(x) �= gi( y)]) = nx

since Pr[gi(x) = gi( y)] = 1
2 . The variance of each estimate is

Var(X i) = E
(
X 2

i

) − E(X i)2 (2)

= E(gi(x)2(t[i][hi(x)])2) − n2
x (3)

= 2
∑

y �=x,z

nynzPr[hi( y) = hi(z)](Pr[gi(x) = gi( y)] − Pr[gi(x) �= gi( y)])(4)

+ n2
x +

∑
y �=x

g2
i ( y)n2

yPr[hi( y) = hi(x)] − n2
x (5)

=
∑
y �=x

n2
y

W
≤ n2

W
. (6)

Using the Chebyshev inequality, it follows that Pr[|X i − x| >
√

2n√
W

] < 1
2 .

Taking the median of T estimates amplifies this probability to 2T/4, by a stan-
dard Chernoff bounds argument [Motwani and Raghavan 1995].

1CCFC denotes the initials of the authors of Charikar et al. [2002].

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



What’s Hot and What’s Not: Tracking Most Frequent Items Dynamically • 267

4.1.5 Space and Time. The space used is for the W T counters and the 2T
hash functions. The time taken for each update is the time to compute the 2T
hash functions, and update T counters.

THEOREM 4.2. By setting W = 2
ε2 and T = 4 log 1

δ
then we can estimate the

count of any item up to error ±εn with probability at least 1 − δ.

4.2 Adaptive Group Testing Using CCFC Count Sketch

We can now implement an adaptive group testing solution to finding hot items.
The basic idea is to apply the adaptive binary search procedure using the above
count sketch to implement the dyadic range sum oracle. The full procedure is
shown in Figure 4.

THEOREM 4.3. Setting W = 2
ε2 and T = log k log m

δ
allows us to find every item

with frequency greater than 1
k+1 +ε, and report no item with frequency less than

1
k+1 −ε, with a probability of at least 1−δ. The space used is O( 1

ε2 log(m) log k log m
δ

)
words, and the time to perform each update is O(log(m) log k log m

δ
). The query time

is O(k log m log k log m
δ

) with a proabability of at least 1 − δ.

PROOF. We set the probability of failure to be low ( δ
k log m ), so that for the

O(k log m) queries that we pose to the oracle, there is probability at most δ of
any of them failing, by the union bound. Hence, we can assume that with a
probability of at least 1− δ, all approximations are within the ±εn error bound.
Then, when we search for hot items, any range containing a hot item will have
its approximate count reduced by at most εn. This will allow us to find the hot
item, and output it if its frequency is at least 1

k+1 + ε. Any item which is output
must pass the final test, based on the count of just that item, which will not
happen if its frequency is less than 1

k+1 − ε.
Space is needed for log(m) sketches, each of which has size O(T W ) words. For

these settings of T and W , we obtain the space bounds listed in the theorem.
The time per update is that needed to compute 2T log(m) hash values, and then
to update up to this many counters, which gives the stated update time.

4.2.1 Hot Item Count Estimation. Note that we can immediately extract
the estimated counts for each hot item using the data structure, since the count
of item x is given by using the lowest-level approximate count. Hence, the count
nx is estimated with error at most εn in time O(log(m) log k log m

δ
).

4.3 Time-Space Tradeoffs

As with the nonadaptive group testing method, the time cost for updates de-
pends on T and log m. Again, in practice we found that small values of T could
be used, and that computation of the hash functions could be parallelized for
extra speedup. Here, the dependency on log m is again the limiting factor. A
similar trick to the nonadaptive case is possible, to change the update time
dependency to logb m for arbitrary b: instead of basing the oracle on dyadic
ranges, base it on b-adic ranges. Then only logb m sketches need to be updated
for each transaction. However, under this modification, the same guarantees
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do not hold. In order to extract the hot items, many more queries are needed:
instead of making at most two queries per hot item per level, we make at most
b queries per hot item per level, and so we need to reduce the probability of
making a mistake to reflect this. One solution would be to modify T to give a
guarantee—but this can lose the point of the exercise, which is to reduce the
cost of each update. So instead we treat this as a heuristic to try out in practice,
and to see how well it performs.

A more concrete improvement to space and time bounds comes from observ-
ing that it is wasteful to keep sketches for high levels in the hierarchy, since
there are very few items to monitor. It is therefore an improvement to keep
exact counts for items at high levels in the hierarchy.

5. COMPARISON BETWEEN METHODS AND EXTENSIONS

We have described two methods to find hot items after observing a sequence of
insertion and deletion transactions, and proved that they can give guarantees
about the quality of their output. These are the first methods to be able to give
such guarantees in the presence of deletions, and we now go on to compare
these two different approaches. We will also briefly discuss how they can be
adapted when the input may come in other formats.

Under the theoretical analysis, it is clear that the adaptive and nonadap-
tive methods have some features in common. Both make use of universal hash
functions to map items to counters where counts are maintained. However, the
theoretical bounds on the adaptive search procedure look somewhat weaker
than those on the nonadaptive methods. To give a guarantee of not outputting
items which are more than ε from being hot items, the adaptive group testing
depends on 1/ε2 in space, whereas nonadaptive testing uses 1/ε. The update
times look quite similar, depending on the product of the number of tests, T ,
and the bit depth of the universe, logb(m). It will be important to see how these
methods perform in practice, since these are only worst-case guarantees. In or-
der to compare these methods in concrete terms, we shall use the same values
of T and W for adaptive and nonadaptive group testing in our tests, so that
both methods are allocated approximately the same amount of space.

Another difference is that adaptive group testing requires many more hash
function evaluations to process each transaction compared to nonadaptive
group testing. This is because adaptive group testing computes a different hash
for each of log m prefixes of the item, whereas nonadaptive group testing com-
putes one hash function to map the item to a group, and then allocates it to
subgroups based on its binary representation. Although the universal hash
functions can be implemented quite efficiently [Thorup 2000], this extra pro-
cessing time can become apparent for high transaction rates.

5.1 Other Update Models

In this work we assume that we modify counts by one each time to model in-
sertions or deletions. But there is no reason to insist on this: the above proofs
work for arbitrary count distributions; hence it is possible to allow the counts
to be modified by arbitrary increments or decrements, in the same update time
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bounds. The counts can even include fractional values if so desired. This holds
for both the adaptive and nonadaptive methods. Another feature is that it is
straightforward to combine the data structures for the merge of two distribu-
tions: providing both data structures were created using the same parameters
and hash functions, then summing the counters coordinatewise gives the same
set of counts as if the whole distribution had been processed by a single data
structure. This should be contrasted to other approaches [Babcock and Olston
2003], which also compute the overall hot items from multiple sources, but keep
a large amount of space at each location: instead the focus is on minimizing the
amount of communication. Immediate comparison of the approaches is not pos-
sible, but for periodic updates (say, every minute) it would be interesting to
compare the communication used by the two methods.

6. EXPERIMENTS

6.1 Evaluation

To evaluate our approach, we implemented our group testing algorithms in
C. We also implemented two algorithms which operate on nondynamic data,
the algorithm Lossy Counting [Manku and Motwani 2002] and Frequent [De-
maine et al. 2002]. Neither algorithm is able to cope with the case of the dele-
tion of an item, and there is no obvious modification to accommodate dele-
tions and still guarantee the quality of the output. We instead performed
a “best effort” modification: since both algorithms keep counters for certain
items, which are incremented when that item is inserted, we modified the
algorithms to decrement the counter whenever the corresponding item was
deleted. When an item without a counter was deleted, then we took no action.2

This modification ensures that when the algorithms encounter an inserts-only
dataset, then their action is the same as the original algorithms. Code for
our implementations is available on the Web, from http://www.cs.rutgers.
edu/̃muthu/massdal-code-index.html.

6.1.1 Evaluation Criteria. We ran tests on both synthetic and real data,
and measured time and space usage of all four methods. Evaluation was carried
out on a 2.4-GHz desktop PC with 512-MB RAM. In order to evaluate the quality
of the results, we used two standard measures: the recall and the precision.

Definition 6.1. The recall of an experiment to find hot items is the pro-
portion of the hot items that are found by the method. The precision is the
proportion of items identified by the algorithm which are hot items.

It will be interesting to see how these properties interact. For example, if
an algorithm outputs every item in the range 1 · · · m then it clearly has perfect
recall (every hot item is indeed included in the output), but its precision is
very poor. At the other extreme, an algorithm which is able to identify only the

2Many variations of this theme are possible. Our experimental results here that compare our
algorithms to modifications of Lossy Counting [Manku and Motwani 2002] and Frequent [Demaine
et al. 2002] should be considered proof-of-concept only.
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Fig. 5. Experiments on a sequence of 107 insertion-only transactions. Left: testing recall (propor-
tion of the hot items reported). Right: testing precision (proportion of the output items which were
hot).

most frequent item will have perfect precision, but may have low recall if there
are many hot items. For example, the Frequent algorithm gives guarantees on
the recall of its output, but does not strongly bound the precision, whereas,
for Lossy Counting, the parameter ε affects the precision indirectly (depending
on the properties of the sequence). Meanwhile, our group testing methods give
probabilistic guarantees of perfect recall and good precision.

6.1.2 Setting of Parameters. In all our experiments, we set ε = 1
k+1 and

hence set W = 2
k+1 , since this keeps the memory usage quite small. In practice,

we found that this setting of ε gave quite good results for our group testing
methods, and that smaller values of ε did not significantly improve the results.
In all the experiments, we ran both group testing methods with the same val-
ues of W and T , which ensured that on most base experiments they used the
same amount of space. In our experiments, we looked at the effect of varying
the value of the parameters T and b. We gave the parameter ε to each algo-
rithm and saw how much space it used to give a guarantee based on this ε.
In general, the deterministic methods used less space than the group testing
methods. However, when we made additional space available to the determin-
istic methods equivalent to that used by the group testing approaches, we did
not see any significant improvement in their precision and we saw a similar
pattern of dependency on the Zipf parameter.

6.2 Insertions-Only Data

Although our methods have been designed for the challenges of transaction
sequences that contain a mix of insertions and deletions, we first evaluated a
sequence of transactions which contained only insertions. These were gener-
ated by a Zipf distribution, whose parameter was varied from 0 (uniform) to 3
(highly skewed). We set k = 1000, so we were looking for all items with fre-
quency 0.1% and higher. Throughout, we worked with a universe of size m = 232.
Our first observation on the performance of group testing-based methods is
that they gave good results with very small values of T . The plots in Figure 5
show the precision and recall of the methods with T = 2, meaning that each
item was placed in two groups in nonadaptive group testing, and two estimates
were computed for each count in adaptive group testing. Nonadaptive group
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Fig. 6. Experiments on synthetic data consisting of 107 transactions.

testing is denoted as algorithm “NAGT,” and adaptive group testing as algo-
rithm “Adapt.” Note that, on this data set, the algorithms Lossy Counting and
Frequent both achieved perfect recall, that is, they returned every hot item.
This is not surprising: the deterministic guarantees ensure that they will find
all hot items when the data consists of inserts only. Group testing approaches
did pretty well here: nonadaptive got almost perfect recall, and adaptive missed
only a few for near uniform distributions. On distributions with a small Zipf
parameter, many items had counts which were close to the threshold for be-
ing a hot item, meaning that adaptive group testing can easily miss an item
which is just over the threshold, or include an item which is just below. This is
also visible in the precision results: while nonadaptive group testing included
no items which were not hot, adaptive group testing did include some. How-
ever, the deterministic methods also did quite badly on precision, frequently
including many items which were not hot in its output while, for this value
of ε, Lossy Counting did much better than Frequent, but consistently worse
than group testing. As we increased T , both nonadaptive and adaptive group
testing got perfect precision and recall on all distributions. For the experiment
illustrated, the group testing methods both used about 100 KB of space each,
while the deterministic methods used a smaller amount of space (around half as
much).

6.3 Synthetic Data with Insertions and Deletions

We created synthetic datasets designed to test the behavior when confronted
with a sequence including deletes. The datasets were created in three equal
parts: first, a sequence of insertions distributed uniformly over a small range;
next, a sequence of inserts drawn from a Zipf distribution with varying param-
eters; last, a sequence of deletes distributed uniformly over the same range as
the starting sequence. The net effect of this sequence should be that the first
and last groups of transactions would (mostly) cancel out, leaving the “true”
signal from the Zipf distribution. The dataset was designed to test whether the
algorithms could find this signal from the added noise. We generated a dataset
of 10,000,000 items, so it was possible to compute the exact answers in order
to compare, and searched for the k = 1000 hot items while varying the Zipf pa-
rameter of the signal. The results are shown in Figure 6, with the recall plotted
on the left and the precision on the right. Each data point comes from one trial,
rather than averaging over multiple repetitions.
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The purpose of this experiment was to demonstrate a scenario where insert-
only algorithms would not be able to cope when the dataset included many
deletes (in this case, one in three of the transactions was a deletion). Lossy
Counting performed worst on both recall and precision, while Frequent man-
aged to get good recall only when the signal was very skewed, meaning the
hot items had very high frequencies compared to all other items. Even when
the recall of the other algorithms was reasonably good (finding around three-
quarters of the hot items), their precision was very poor: for every hot item that
was reported, around 10 infrequent items were also included in the output,
and we could not distinguish between these two types. Meanwhile, both group
testing approaches succeeded in finding almost all hot items, and outputting
few infrequent items.

There is a price to pay for the extra power of the group testing algorithm: it
takes longer to process each item under our implementation, and requires more
memory. However, these memory requirements are all very small compared
to the size of the dataset: both group testing methods used 187 kB—Lossy
Counting allocated 40 kB on average, and Frequent used 136 kB.3 In a later
section, we look at the time and space costs of the group testing methods in
more detail.

6.4 Real Data with Insertions and Deletions

We obtained data from one of AT&Ts networks for part of a day, totaling around
100 MB. This consisted of a sequence of new telephone connections being initi-
ated, and subsequently closed. The duration of the connections varied consid-
erably, meaning that at any one time there were huge numbers of connections
in place. In total, there were 3.5 million transactions. We ran the algorithms
on this dynamic sequence in order to test their ability to operate on naturally
occurring sequences. After every 100,000 transactions we posed the query to
find all (source, destination) pairs with a current frequency greater than 1%.
We were grouping connections by their regional codes, giving many millions of
possible pairs, m, although we discovered that geographically neighboring ar-
eas generated the most communication. This meant that there were significant
numbers of pairings achieving the target frequency. Again, we computed recall
and precision for the three algorithms, with the results shown in Figure 7: we
set T = 2 again and ran nonadaptive group testing (NAGT) and adaptive group
testing (Adapt).

The nonadaptive group testing approach is shown to be justified here on real
data. In terms of both recall and precision, it is nearly perfect. On one occasion,
it overlooked a hot item, and a few times it included items which were not
hot. Under certain circumstances this may be acceptable if the items included
are “nearly hot,” that is, are just under the threshold for being considered hot.
However, we did not pursue this line. In the same amount of space, adaptive
group testing did almost as well, although its recall and precision were both

3These reflected the space allocated for the insert-only algorithms based on upper bounds on the
space needed. This was done to avoid complicated and costly memory allocation while processing
transactions.
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Fig. 7. Performance results on real data.

Fig. 8. Choosing the frequency level at query time: the data structure was built for queries at the
0.5% level, but was then tested with queries ranging from 10% to 0.01%.

less good overall than nonadaptive. Both methods reached perfect precision and
recall as T was increased: nonadaptive group testing achieved perfect scores
for T = 3, and adaptive for T = 7.

Lossy Counting performed generally poorly on this dynamic dataset, its
quality of results swinging wildly between readings but on average finding
only half the hot items. The recall of the Frequent algorithm looked reasonably
good, especially as time progressed, but its precision, which began poorly,
appeared to degrade further. One possible explanation is that the algorithm
was collecting all items which were ever hot, and outputting these whether
they were hot or not. Certainly, it output between two to three times as many
items as were currently hot, meaning that its output necessarily contained
many infrequent items.

Next, we ran tests which demonstrated the flexibility of our approach. As
noted in Section 3.2, if we create a set of counters for nonadaptive group testing
for a particular frequency level f = 1/(k +1), then we can use these counters to
answer a query for a higher frequency level without any need for recomputation.
To test this, we computed the data structure for the first million items of the
real data set based on a frequency level of 0.5%. We then asked for all hot items
for a variety of frequencies between 10% and 0.5%. The results are shown
in Figure 8. As predicted, the recall level was the same (100% throughout),
and precision was high, with a few nonhot items included at various points.
We then examined how much below the designed capability we could push the
group testing algorithm, and ran queries asking for hot items with progressively
lower frequencies. For nonadaptive group testing with T = 1, the quality of the
recall began deteriorating after the query frequency descended below 0.5%, but
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Fig. 9. Timing results on real data.

for T = 3 the results maintained an impressive level of recall down to around
the 0.05% level, after which the quality deteriorated (around this point, the
threshold for being considered a hot item was down to having a count in single
figures, due to deletions removing previously inserted items). Throughout, the
precision of both sets of results were very high, close to perfect even when used
far below the intended range of operation.

6.5 Timing Results

On the real data, we timed how long it took to process transactions, as we
varied certain parameters of the methods. We also plotted the time taken by
the insert-only methods for comparison. Timing results are shown in Figure 9.
On the left are timing results for working through the whole data set. As we
would expect, the time scaled roughly linearly with the number of transac-
tions processed. Nonadaptive group testing was a few times slower than for
the insertion-only methods, which were very fast. With T = 2, nonadaptive
group testing processed over a million transactions per second. Adaptive group
testing was somewhat slower. Although asymptotically the two methods have
the same update cost, here we see the effect of the difference in the methods:
since adaptive group testing computes many more hash functions than non-
adaptive (see Section 5), the cost of this computation is clear. It is therefore
desirable to look at how to reduce the number of hash function computations
done by adaptive group testing. Applying the ideas discussed in Sections 3.3
and 4.3, we tried varying the parameter b from 2.

The results for this are shown on the right in Figure 9. Here, we plot the
time to process two million transactions for different values of b against T , the
number of repetitions of the process. It can be seen that increasing b does indeed
bring down the cost of adaptive and nonadaptive group testing. For T = 1,
nonadaptive group testing becomes competitive with the insertion methods in
terms of time to process each transaction. We also measured the output time
for each method. The adaptive group testing approach took an average 5 ms
per query, while the nonadaptive group testing took 2 ms. The deterministic
approaches took less than 1 ms per query.

6.6 Time-Space Tradeoffs

To see in more detail the effect of varying b, we plotted the time to process two
million transactions for eight different values of b (2, 4, 8, 16, 32, 64, 128, and
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Fig. 10. Time and space costs of varying b.

Fig. 11. Precision and recall on real data as b and T vary.

256) and three values of T (1, 2, 3) at k = 100. The results are shown in
Figure 10. Although increasing b does improve the update time for every
method, the effect becomes much less pronounced for larger values of b, sug-
gesting that the most benefit is to be had for small values of b. The benefit seems
strongest for adaptive group testing, which has the most to gain. Nonadaptive
group testing still computes T functions per item, so eventually the benefit of
larger b is insignificant compared to this fixed cost.

For nonadaptive group testing, the space must increase as b increases. We
plotted this on the right in Figure 10. It can be seen that the space increases
quite significantly for large values of b, as predicted. For b = 2 and T = 1, the
space used is about 12 kB, while for b = 256, the space has increased to 460 kB.
For T = 2 and T = 3, the space used is twice and three times this, respectively.

It is important to see the effect of this tradeoff on accuracy as well. For non-
adaptive group testing, the precision and recall remained the same (100% for
both) as b and T were varied. For adaptive group testing, we kept the space
fixed and looked at how the accuracy varied for different values of T . The results
are given in Figure 11. It can be seen that there is little variation in the recall
with b, but it increases slightly with T , as we would expect. For precision, the
difference is more pronounced. For small values of T , increasing b to speed up
processing has an immediate effect on the precision: more items which are not
hot are included in the output as b increases. For larger values of T , this effect
is reduced: increasing b does not affect precision by as much. Note that the
transaction processing time is proportional to T/ log(b), so it seems that good
tradeoffs are achieved for T = 1 and b = 4 and for T = 3 and b = 8 or 16.
Looking at Figure 10, we see that these points achieve similar update times, of
approximately one million items per second in our experiments.
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7. CONCLUSIONS

We have proposed two new methods for identifying hot items which occur more
than some frequency threshold. These are the first methods which can cope with
dynamic datasets, that is, the removal as well as the addition of items. They
perform to a high degree of accuracy in practice, as guaranteed by our analysis of
the algorithm, and are quite simple to implement. In our experimental analysis,
it seemed that an approach based on nonadaptive group testing was slightly
preferable to one based on adaptive group testing, in terms of recall, precision,
and time.

Recently, we have taken these ideas of using group testing techniques to
identify items of interest in small space, and applied them to other problems.
For example, consider finding items which have the biggest frequency differ-
ence between two datasets. Using a similar arrangement of groups but a dif-
ferent test allows us to find such items while processing transactions at very
high rates and keeping only small summaries for each dataset [Cormode and
Muthukrishnan 2004b]. This is of interest in a number of scenarios, such as
trend analysis, financial datasets, and anomaly detection [Yi et al. 2000]. One
point of interest is that, for that scenario, it is straightforward to generalize the
nonadaptive group testing approach, but the adaptive group testing approach
cannot be applied so easily.

Our approach of group testing may have application to other problems, no-
tably in designing summary data structures for the maintenance of other statis-
tics of interest and in data stream applications. An interesting open problem
is to find combinatorial designs which can achieve the same properties as our
randomly chosen groups, in order to give a fully deterministic construction for
maintaining hot items. The main challenge here is to find good “decoding” meth-
ods: given the result of testing various groups, how to determine what the hot
items are. We need such methods that work quickly in small space.

A significant problem that we have not approached here is that of continu-
ously monitoring the hot items—that is, to maintain a list of all items that are
hot, and keep this updated as transactions are observed. A simple solution is to
keep the same data structure, and to run the query procedure when needed, say
once every second, or whenever n has changed by more than k. (After an item
is inserted, it is easy to check whether it is now a hot item. Following deletions,
other items can become hot, but the threshold of n/(k + 1) only changes when
n has decreased by k + 1.) In our experiments, the cost of running queries is
a matter of milliseconds and so is quite a cheap operation to perform. In some
situations this is sufficient, but a more general solution is needed for the full
version of this problem.

ACKNOWLEDGMENTS

We thank the anonymous referees for many helpful suggestions.

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1987. Data structures and algorithms. Addison-
Wesley, Reading, MA.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



What’s Hot and What’s Not: Tracking Most Frequent Items Dynamically • 277

ALON, N., GIBBONS, P., MATIAS, Y., AND SZEGEDY, M. 1999. Tracking join and self-join sizes in limited
storage. In Proceedings of the Eighteenth ACM Symposium on Principles of Database Systems.
10–20.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency
moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting. 20–29. Journal version in J. Comput. Syst. Sci., 58, 137–147, 1999.

BABCOCK, B. AND OLSTON, C. 2003. Distributed top-k monitoring. In Proceedings of ACM SIGMOD
International Conference on Management of Data.

BARBARA, D., WU, N., AND JAJODIA, S. 2001. Detecting novel network intrusions using Bayes esti-
mators. In Proceedings of the First SIAM International Conference on Data Mining.

BOYER, B. AND MOORE, J. 1982. A fast majority vote algorithm. Tech. Rep. 35. Institute for Com-
puter Science, University of Texas, at Austin, Austin, TX.

CARTER, J. L. AND WEGMAN, M. N. 1979. Universal classes of hash functions. J. Comput. Syst.
Sci. 18, 2, 143–154.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams. In
Procedings of the International Colloquium on Automata, Languages and Programming (ICALP).
693–703.

CORMODE, G. AND MUTHUKRISHNAN, S. 2003. What’s hot and what’s not: Tracking most frequent
items dynamically. In Proceedings of ACM Conference on Principles of Database Systems. 296–
306.

CORMODE, G. AND MUTHUKRISHNAN, S. 2004a. An improved data stream summary: The count-min
sketch and its applications. J. Algorithms. In press.

CORMODE, G. AND MUTHUKRISHNAN, S. 2004b. What’s new: Finding significant differences in net-
work data streams. In Proceedings of IEEE Infocom.
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