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Abstract

The design of superimposed codes for the multiaccess
OR-channel is considered. The performance of constant
weight ( CW ) codes when used as superimposed codes is
investigated. Several constructions for CW codes are
compared : affine geometry codes, projective geometry
codes, and codes obtained by code concatenation. A
comparison to the sphere packing bound and the
Johnson bounds is made.

L Introduction

Consider the situation when a large number of users
share a common channel. The classical solution of fixed
assignment ( i.e. time division multiple access ,TDMA,
or frequency division multiple access ,FDMA ) is
adequate if most of the users are active most of the time.
But if only a small subset is active at any time interval,
the fixed assignment solution is clearly inefficient.
Superimposed codes can be used in such situations.
These codes are especially useful when immediate
feedback is not possible, as in satellite channels. Ground
stations can ,for example, use these codes to make
reservations for data channels. We investigate the
performance of a class of codes that can easily be
characterized as superimposed codes. This class is CW
codes. In section II the system model and formal
definitions of the codes are presented. The relation
between CW codes and superimposed codes is described
in section III. Bounds on superimposed codes and CW
codes are given in section IV. In section V several
constructions for CW codes are presented and their
performance as superimposed codes is analysed.

II. The system model

Before we describe the system model we need some
definitions.

Definition Superposition of binary sequences

The superposition x V'y of two binary {0,1} sequences x
and y of length n is defined as
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xVy A z = (zl,z2,...,zn)

where
A 0 if X = yi=0
5% 1 otherwise
The superposition of a set A = {xx®, .. ™y of n-

dimensional binary sequences is denoted by
fa) & xXVV@V V™,

Definition Multiaccess OR-channel

With a Multiaccess OR-Channel we mean a channel that
operates on a set A of binary sequences and produces an
output sequence z equal to the superposition of the input
set, i.e.

z & fa).

The correlation between two binary {0,1} sequences x
and y (abbreviated c(x,y) is simply the number of
positions where both have ones.

Definition Disjunctive Code

The binary code C with codeword length n and size T is a
disjunctive code (also called zero false dropping code) of
order m if each subset A ¢ C of size |A|< m has the
property that for every word x e A we have c(x,f(4)) =
wy(x) but for all other words Xe C\A we have c¢(X,f(A)) <
wy(®. The set of all disjunctive codes with parameters n,
m and T is denoted 2( n,m,T ).

The class of disjunctive codes is a subset of the class of
superimposed codes , and were introduced by W.H.
Kautz and R.C. Singleton [1]. See also [2].

Definition Protocol Sequence

The binary code C with length n and size T is a protocol
sequence of order m if any set A ¢ C of size m or less
has the property that any x € A has at least one position
where it has a one where all other codewords in A has a
zero ( we say x has a free slot ). The set of all protocol
sequences with parameters n, m and T is denoted by
An,m,T).
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Definition Constant Weight Code

The binary code C with codeword length n and size T is a
constant weight code if all codewords xe C have the same
Hamming weight wy(x) = w. One interesting parameter
for the constant weight codes is the maximum cor-
relation c¢ which is related to the minimum distance d by
the identity

d=2w-2c .

The set of all constant weight codes with parameters n,
w, ¢ and T is denoted CW{ n,w,c,T ).

Our system consists of a set of T users that share a
multiaccess OR-channel ( see fig. 1 ).We distribute
codewords from a superimposed code to all users. We
assume block and bit synchronization between the users.
The users transmit through the channel. All nonactive
users can be thought of as transmitting the all-zero
sequence. If the number of active users is less than or
equal to m we know from the definition of superimposed
codes that we can decompose the received word into its
component codewords.If each user is given a set of
codewords , information can be communicated. But if
every user is given only one codeword we can identify the
active users. In this paper we consider only the
identification problem. The codeword length ( n ) in a
superimposed code is proportional to the delay. Our
objective is to find superimposed codes that have a low n
for a fixed m and T.
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Figure 1. System model

IIL Relation between CW codes and superimposed codes

It has been shown ( see [1], 2], and [3] ) that the
following relations are valid.

Dn,m-1,T) = An,m,T) (e8]
WoweT g Bn, Twicl,T 1))

where I x 1 denotes the lowest integer greater than or
equal to x.

Combining (1) and (2 ) we get
CWMnw,eT) ¢ D, Fwel-1,1 3)
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Thus any CW code with parameters n,w,c, and T is a
superimposed code of length n, size T and order greater

than or equal to ['w/c1-1. We call ['w/c]-1 the designed
order and denote it by m, .

IV. Bounds
(a) A sphere packing bound
Define
Np@m,T) £ min { n: Dn,m,T) = @ )
It has been shown ( see [3] ) that

Np@m,T) > log, i ('f)
i=0

(b) Johnson bounds : The two Johnson bounds for CW
codes are upper bounds on the codesize T for fixed n,m
and c ( see ref. [9] and [10] ). We use them in a slightly
weaker form.

n
(c+1)

()

2) T,we) < Ln

1) T(n,we) <

—VQVLJ if w? > nc

W -nc

where | x | denotes the integer part of x.

These bounds are used indirectly to find the minimum
length n of CW codes that are disjunctive codes with size
T, and order m_. More precisely, we look for sets of
parameters n,w, and c satisfying:

1) T(,w,c) 2 T,
2) Twicl-12m,

Among these sets we find the one with the lowest n.

V. CW codes and their performance as supeimposed
codes

Five different families of CW codes are compared. The
first two constructions are based on finite geometries. By
restricting ourselves to finite fields we obtain the
following codes : ( see ref. [5] appendix B and ref. [4] ) :

(1) Affine geometry codes ( AG(k,q)):

AGlk = M n=q"w=gqc=1, T-qq:;l )

where q is a power of prime.
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(2) Projective geometry codes ( PG(k,q)):
PGk,q) =

k+1

Cw(n=q—_1-1-,w=q+1,c=1,T=(

qk+1 -1)(qk -1) )
q

(@“-1(g-1)
where q is a power of prime.

Both constructions are optimum in the sense that they
satisfy the first Johnson bound with equality.

The rest of the codes are based on code concatenation.
(3) Concatenated codes :

A concatenated code ( see ref. [8] ) consists of an outer
code and an inner code. The alphabet of the outer code is
mapped into codewords from the inner code. We use a
Reed-Solomon (RS) outer code and a CW code as inner
code. Clearly the resulting code is also a CW code. For the
inner code we use : AG(k,p), PG(k,p), and the orthogonal
weight one code.

These constructions will be abbreviated by AG, PG,
RS/AG, RS/PG, RS/orth.The last three codes are the
concatenated codes.

Based on equation (3) we analysed the performance of
these codes when used as superimposed codes. Our task
now is to find the codes that give the shortest length (i.e.
minimum delay ) for a fixed m; and T.

After extensive search it was found that the code RS/orth.
gives the minimum delay. Table 1 shows the codeword

length for code size 10* and 107 . For different values of T
the pattern is the same.

my AG PG RS/AG  RS/PG RS/Orth

2 625 255 135 130 7

3 625 364 3% 341 110

4 625 781 726 651 169

5 1331 781 1089 1064 253

6 1331 1464 1573 1596 299

7 1331 1464 2178 2128 345
(@ T>10*

m, AG PG RS/AG RS/PG RS/Orth

2 15625 8191 275 255 169

3 15625 19531 625 651 256

4 15625 19531 1408 1460 459

5 32768 19531 2304 2263 567

6 32768 37449 3969 3577 675

7 32768 37449 5625 5784 899
®) T>10"

Table 1. Codeword length n for different classes of codes
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Figure 2 shows the length of RS/orth. for T>10" and my
from 2 to 20. The bounds in the figure should be
interpreted with care. The Johnson bounds give a lower
bound for the codeword length n of CW codes under the
restriction that T 210’ , while the sphere packing bound
is a lower bound for n of disjunctive codes under the same
restriction. For the Johnson bounds the parameters w
and ¢ of the CW code were translated into the
parameter m; of the corresponding disjunctive code (see
section IIT ). Table 2 gives the parameters of the
concatenated RS/orth. code in detail. The subscripts i and
o denote inner and outer code respectively.

It should be noted that an efficient decoding algorithm
for this code has been developed ( see ref, [11] ).
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Figure 2. Performance of RS/orth.

n,=w k, q=n n c=k-1 T= my
13 7 13 169 6 6.3-10; 2
16 6 16 256 5 17100 3
17 5 2 459 4 14107 4
2 5 2 567 4 14107 5
% 5 x 675 4 14107 6
29 5 2 841 4 21107 7
33 5 2 1056 4 34107 8
37 5 37 1369 4 6910] 9
41 5 4 1681 4 12100 10
£ 4 5 2006 3 1.2107 1
37 4 59 2183 3 12107 12
40 4 59 2360 3 1.2107 13
43 4 59 2537 3 1.2-10_7, 14
46 4 5 274 3  1210] 15
49 4 5 2801 3 12107 16
52 4 59 3068 3 12107 17
55 4 5  3u5 3 1210, 18
58 4 5 3422 3 1210, 19
al 4 6 3721 3 14107 o

Table 2. Parameters for the RS/orth. code



VL Conclusion

Superimposed codes can be used for unique
identification of users sharing a multiaccess OR-
channel. Superimposed codes can easily be derived from
constant weight codes. A comparison between several
families of constant weight codes was made. It was found
that using a concatenated code with a Reed-Solomon
outer code and an orthogonal weight one inner code gives
the lowest block length ( i.e. lowest delay ).
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