
HW02 Problem Set

CS-3020

1

Assignment

Exercises 5.0, 6.0 and Deitel and Deitel Exercise 7.36

HW02-1: (Exercise 5.0 - Instructor provided)

Implement a class named RevolvingLoan that represents a somewhat simplified revolving loan

account such as a credit card. The end goal of this assignment is to be able to determine how long it

would take to pay a purchase off, and how much the final cost would be, if only the minimum payment

were made each month. To do this, our loan object has to be able to process purchases and payments

and close each statement period by adding interest charges and telling us what the minimum payment

is.

In addition to the constructor, in which we establish the terms for the account, we need a public

interface that includes the ability to make purchases, close a statement period, get the minimum

payment, accept payments, and provide the balance.

The public methods are thus:

RevolvingLoan(decimal rate, decimal pmtPct, decimal pmtDlr)

rate: Annualized interest rate as a percentage (19.8% is enterest as 19.8).

pmtPct: The fraction of the balance, as a percentage, this is due each month.

pmtDlr: The floor of the minimum payment unless the balance is below this.

A common method of calculating the minimum payment involves three steps. First, the minimum

payment is a specified fraction of the statement balance. This is typically between 1% and 2%, so an

account with a $247 balance and a 1% minimum would have a minimum payment of $2.47. If this

minimum is less than the minimum dollar payment, then the minimum payment is increased to the

minimum dollar amount. Finally, if the minimum payment is greater than the account balance, the

minimum payment is set equal to the account balance.

void Purchase(decimal amount)

amount: Dollar amount of a purchase.

The amount of the purchase is added to the account balance.

void Payment(decimal amount)

amount: Dollar amount of a payment.

The amount of the payment is subtracted from the account balance.

HW02 Problem Set

CS-3020

2

decimal Close()

This method closes a statement period by first calculating the interest charge for the period (defined

here as 1/12 of a year), adding that to the balance, and then calculating and returning the minimum

payment that is due. For simplicity, all purchases and payments are assumed to have occurred at the

very start of the period being closed.

decimal Balance()

This method returns the current balance of the account.

decimal MinimumPayment()

This method returns the minimum payment for the most recently closed statement period.

You may (and should) have additional private methods to perform other tasks, such as calculating the

minimum payment or calculating the interest charges. Some of these may benefit from further, more

narrowly defined, helper methods.

You should use the decimal data type for nearly all of your variables.

Your dollar computations should be rounded to the nearest cent, rounding 0.5 cent upward. There is a

math library method (Math.Floor()) that takes a double and returns an int that is the integer

part of the value passed, truncating any fractional part no matter how big or small. To use this with

decimal variables you will need to typecast the decimal variable to a double.

The test class, RevolvingLoanTest, is provided for you with two tests built in.

 You are to write a third test that determines how long it would take, display as years and months, for

someone to pay off a $5000 purchase made on a card having an interest rate of 29.8%, a monthly

minimum payment of 3% of the balance with a floor of $15. Instead of returning a pass/fail result to the

main program, this test should print out a line similar to the following:

Paying off $1000 will take 24 years and 0 months and cost $3717.14.

This should be the output if you use the scenario in Test2()

Write a fourth test in which the card holder makes payments equal to twice the minimum payment

(except for the last one which should bring the balance exactly to zero).

HW02 Problem Set

CS-3020

3

HW02-2: (Exercise 6.0 – Instructor provided)

Implement a class named Mortgage which is very similar to the RevolvingLoan class from the

previous exercise, in fact the public interface is nearly identical, though the details of some of the

methods are slightly different.

The public methods are thus:

Mortgage(decimal principal, decimal rate, decimal term)

rate: Annualized interest rate as a percentage (19.8% is enterest as 19.8).

principal: The initial loan amount.

term: The number of years the loan is amortized over.

void Payment(decimal amount)

amount: Dollar amount of a payment.

The amount of the payment is subtracted from the account balance.

decimal Close()

This method closes a statement period by first calculating the interest charge for the period (defined

here as 1/12 of a year) and adding that to the balance. For simplicity, all payments are assumed to have

occurred at the very start of the period being closed. The function returns the amount of interest that

was charged.

decimal Balance()

This method returns the current principle balance of the account.

decimal MinimumPayment()

This method returns the minimum payment associated with this mortgage.

The minimum payment (for principal and interest) on a mortgage is the amount that will come closest to

paying of the loan at the end of the term (assuming all payments are made on time and for the

minimum amount due). This is almost never an exact outcome and the final payment, called the

residual, is either slightly more or slightly less than the calculated minimum payment. In general, the

minimum payment is calculated at the beginning of the loan and does not change even if additional

principal payments are made. That is the case that will be assumed here.

decimal ResidualPayment()

This method returns the amount of the residual (last) payment associated with this mortgage.

HW02 Problem Set

CS-3020

4

Write a test class (MortgageTest) that uses the following tests (each test should print results to the

console).

Test1(): For a $200,000 30-year mortgage at 4.5%, what are the:

 a) Minimum and residual payments?

 b) Total cost of all payments if paid on schedule?

Test2(): For a $200,000 15-year mortgage at 4.5%, what are the:

 a) Minimum and residual payments?

 b) Total cost of all payments if paid on schedule?

Test3(): For the loan in Test1(), if each month an extra amount is added to the payment equal to the

prior month’s interest (the first month just the minimum payment is made), what will be

a) The fractional increase from the first payment to the second (as a percentage)?

b) The length of time required to pay off the loan (years and months)?

c) The total cost of all payments made?

d) The net savings compared to paying the loan off on schedule?

Test4(): For the loan in Test1(), if each month an extra amount is added to the payment equal to the

prior month’s principle reduction, what will be

a) The fractional increase from the first payment to the second (as a percentage)?

b) The length of time required to pay off the loan (years and months)?

c) The total cost of all payments made?

d) The net savings compared to paying the loan off on schedule?

Test5(): For the loan in Test1(), if each month the payment is twice the minimum payment, what will be

a) The length of time required to pay off the loan (years and months)?

b) The total cost of all payments made?

c) The net savings compared to paying the loan off on schedule?

HW02 Problem Set

CS-3020

5

HW02-3: (Deitel & Deitel Exercise 7.36)

HW02 Problem Set

CS-3020

6

The scan for the second part of the assignment is very poor, but should be readable with a bit of effort.

However, the bottom line of the first part has been cut off. It reads, starting and ending with the

adjacent words on the adjacent lines, “ourselves hopelessly knotted up in managing the disks. Instead, if

we attack the problem with recursion in mind.”

Grading Rubric

Each problem is worth 10 pts (score will be recorded as a percentage of that amount)

10% Properly submitted

10% Properly named

20% Adequate comments

10% Runs

20% Produces correct output

30% Effort evidenced by the submitted work

