A Brief Overview of the C Programming Languange

with a

Short Survey of the Common Pitfalls for Beginners

-- plus --

Basic Programming Style Standards

William L. Bahn

Dynasys Technical Services

© 1993, 1994, 2000

�TOC \o�C Programming Language	3

Introduction	3

A Practical Overview of C	3

Structure of a C Program	4

Program Files	5

Header Files	5

Functions	5

Function Prototypes	6

Example: Functions and Function Prototypes	7

Local Variables	9

Single-File Programs	10

Preprocessor directives	10

#include	10

#define	11

Example illustrating the use of #define	11

Example illustrating the use of #include	13

Principal C Program Structures	14

Code Blocks	14

Logical Tests, Operators and Expressions	15

Return Values of Expressions	15

The if() structure	16

The while() loop	16

The for() loop	16

Statement Structure	18

PITFALL: False Nesting	20

PITFALL: Integer vs. Floating Point Calculations	21

GOOD STYLE: Type casts	21

GOOD STYLE: Parenthesis	22

PITFALL: Traps involving #define text substitutions	22

GOOD STYLE: Variable Names	25

GOOD STYLE: Single Letter Variables	25

PITFALL: Equality Comparisons	26

Special Operators	26

The ++ and -- Operators	26

The +=, -=, *= and /= Operators	27

The Conditional Operator	27

C Programming Standards	29

Global variables	29

Indenting	29

#definitions	29

Variable Names	29

Comments	29

Unused Code	30

Functions	30

Hardcopy Verification	30

��
C Programming Language

Introduction

The purpose of this pamphlet is to introduce the basic tenants of C programs. Although the basic control structures are presented, the intent is not to teach C programming or programming in general. It is expected that the reader has a background in at least one high-level programming language (such as Pascal, ForTran or BASIC) and that you have a basic grasp of programming logic. Instead, this section covers many of the common problems and pitfalls which face new C programmers. This guide is specific to the C portion (as opposed to the C++ portion) of the Borland Turbo C/C++ environment and the terminology used is consistent with that package. However, the concepts are generally applicable to most other C languages with minor phraseology changes.

It should be pointed out that this guide is targeted at beginning C programmers. In keeping with the doctrine that one should learn to crawl before attempting to walk, and to postpone the information overload which can easily occur with learning any software package, the techniques presented here reflect mostly the simple basics. C offers a wide variety of tools for doing many things presented here in a more efficient and elegant manner, and for doing many things not addressed here at all. The reader is strongly encouraged to delve into any of the many C programming references available.

In the last section of this guide, a basic set of programming style standards is presented. While these most certainly are not all inclusive or inflexible, they provide a solid basis for presenting code in a coherent fashion.

A Practical Overview of C

The C programming language lends itself to the development of large programs capable of running on many different platforms while performing tasks not easily accomplished with other languages. The primary reasons for this are that C allows programs to be built up from smaller modules, allows the user to automatically custom tailor the contents of the file before it is compiled and because C is very permissive with what it allows programmers to do.

A C program (generally referred to as a project) actually consists of one or more program files (called .C or "dot-C" files after the file extention used) and supporting header files (the .h files). Usually, each program file has a corresponding header file with the same name. The reason for this is discussed in the section on Header Files. By breaking the code into logical chunks, the user creates modules which can be written, tested and maintained separately. For example, you may have one module which contains functions for performing screen graphics, another for handling serial communications and yet a third for performing specific analysis tasks particular to your application. Once you have completed your program using functions from all of these modules, you may move on to a new project totally unrelated to the first one. However, your new project may still involve screen graphics and serial communications. Instead of rewriting those functions, you simply use the ones from the earlier modules. You don't even have to go back to the full program for the earlier project because each module has its own set of files.

Another very powerful aspect of C programs is that they can be made to run on different platforms. This might entail writing a program which will work on either a DOS based system or a Unix machine. Another example would be computers with different peripheral hardware such as a Kiethley data aquisition system instead of an Analog Devices setup. This is largely possible through the use of what are called pre-processor directives such as '#define', '#ifdef' and '#include' (pre-processor directives are always preceded by a # sign). When you complile a C program, it is first scanned and edited by the Pre-Processor. This consists of looking at the directives and modifying the code accordingly. For instance, the #include directive inserts the entire contents of a separate file into the current one at the location of the directive. This provides a clean yet powerful way of tailoring the code which is actually presented to the compiler. The compiler then takes your source code (the .C files) and generates machine executable code (the .EXE file).

Finally, C allows the user to develop programs capable of performing tasks which other languages would either not allow or would make very difficult. There are two reasons for this: first, C contains not only the easy to use control structures common to high level languages, but also the functions necessary to exercise control over program execution and memory manipulation at a level comparable to assembly language. In addition, C imposes relatively few constraints on what your code does. While these aspects of C give you great flexibility, they also mean that C is largely unable to determine if you have made logic errors (one programmer's error is another programmer's trick). This leaves the responsibility for performing routine error checking up to you. This is not a trivial responsibility and programmers used to languages which do extensive error checking for them (such as BASIC) are often not emotionally well prepared to deal with this. Be forewarned, programmers who take a cavalier attitude towards error checking usually come to grief very quickly. In a nutshell, C is more than willing to give you plenty of rope with which to hang yourself.

In conclusion, the C programming language offers significant advantages over other languages for applications both large and small. These advantages, however, do not come without a price. The learning curve for C is steep and somewhat brutal. Fortunataly, it is not very high and the advantages quickly outweigh the inconveniences

Structure of a C Program

Up to this point in your programming background, you have probably written programs where all of the code is contained in one file. While you can still take this approach with C, it is very limiting and very inefficient for anything other than very small programs (a couple pages of code). Instead, C allows you to group your code into separate files and to build a single program (or project) from them. This means that you can place all of the functions associated with a single task, such as screen graphics or communicating with a data acquisition board, into one file and then use those functions in other programs just as though they were part of the C language. It also means that if you need to update those functions, you only have to do it in the file where those functions are defined (as long as the function prototype - discussed later - remains unchanged). Since the compiler must know which files constitute the final program, you also need a project file (.PRJ file). This file is created and maintained by Turbo C, you merely have to open it and tell it which program files are involved in that particular project, see Fig. 1.

�EMBED MSDraw.Drawing.8.1 * MERGEFORMAT���

As mentioned earlier, the files which make up a C program fall into two categories - program files and header files.

Program Files

Program Files (.c files) contain the actual C source code. They are also known as code files, source files or source code files. One of these files will have the main program in it and all of the others will contain functions which support the main program. This main program is actually itself just a function, and how the compiler knows that it is your main program is that it is called main() (all lowercase). There must be one and only one main() among all of the files which make up your project.

Header Files

Header Files (.h files) generally contain defined constants and function prototypes. A function prototype is simply a line which tells the compiler what a given function will look like as far as variable passing is concerned. This is important since the compiler must allocate memory and establish how items will be placed onto and taken off of the stack each time a function is called. It does not need to know what that function does, just how to communicate with it.

Functions

You should already be familiar with the concept of functions since all high level programming languages use them extensively. For instance, you may wish to find the sine of an angle and write the following statement:

y = sin(theta);

In this example, sin() is a function which accepts a single argument which is a floating point value representing an angle (almost always in radians). When called, the code which makes up the function sin() takes over control of the computer and uses the value that you passed to do something. In this case it uses that value to calculate the sine of the indicated angle. When it is finished, sin() returns control of the computer back to your code and also makes available to your program a value which your program can make use of. In this case, the return value is the sine of the angle and your program stores that value into the variable 'y'. This whole process could be described by the phrase, "Issuing a function call to sin() with the argument 'theta' and storing the return value in the variable 'y'."

In most languages, programmers can write their own functions, generally referred to as user-defined functions, which can then be used elsewhere in the program. User-defined functions work the same way as intrinsic functions do. An intrinsic function is merely a function which is part of the language. C takes the idea of user-defined functions one step further. Instead of a program which may call various functions from time to time, all C programs are themselves nothing but a collection of user-defined functions. As mentioned above, the "main program" is simply a function called main(). When you execute your program, either from DOS or someplace else, a function call is immediately issued to main() and program control is relinquished and given to main() until it finishes and returns a value. At that point the calling program (e.g., DOS) then gets control of the computer again.

In order to use a user-defined function, the compiler must know how that function interacts with whatever piece of code happened to call it. This involves telling the compiler how many and what kind of arguments are to be passed to it, and what type of value it will return to the calling code when it is finished. That's all the compiler needs to know in order to compile the section of code that called your function since that is enough information for it to set up the memory and stack requirements. It assumes that the code that actually makes up the function will be available to it at the appropriate time (which turns out to be when all of the compiled modules, known as object modules, are linked into the the final executable code).

When you define your functions, you make the needed information available to the compiler as part of the function declaration. In this declaration you tell it first what type of value the function will return. This is followed by the name of the function and then, in parentheses, a list of the arguments where both the type of the argument and the name by which that argument will be known locally within the function is given. Following the declaration is a single block of code which is what the function executes when called. The function declaration for the sin() function might look like:

float		sin(float angle)

{

float		sine_of_angle;

// Here would be the code to calculate the sine of 'angle'

return(sine_of_angle);

}

Function Prototypes

It is common practice to place main() as the first function within the primary .C file and have any other user-defined functions in that same file follow it. This presents a problem for the compiler in that if one of the supporting functions is called by main(), the compiler will have to compile that line of code before it has compiled the function. However, since the compiler hasn't seen the support function yet, it doesn't know what kind of arguments at takes or what kind of value it returns. The same is true of any functions which might be located in some other file.

For this reason, C needs a way of telling the compiler enough information about the function for it to compile the rest of the code. This is done through the use of a function prototype which is basically a copy of the function declaration without the associated block of code. In other words, to make a function prototype, simply copy the function declaration and end it with a semi-colon. In order to be useful, a function prototype must appear prior to the first time that the function itself is called. This is normally accomplished by placing the function prototypes just above the function declaration for main().

Now you should be able to see one of the biggest uses for header files. When you write a .C file that contains a collection of functions that you want to be able to use in other files, you place their prototypes in a header file. Then, in the .C file where you intend to use them, you merely #include the appropriate header file at the top of your code and all of the relevent function prototypes are automatically inserted into the file just prior to compilation.

As a matter of course, the compiler will normally expect to find the function declaration and the associated code somewhere within the file if it has seen a prototype in that same file. Clearly this won't always be the case. To tell the compiler that the actual code for a given function might be located in a different file, precede the function prototype with the keyword extern. This tells the compiler that the actual function is possibly located external to the current file and not to issue a 'function not found' error at compile time. Instead, the compiler will flag all function calls to any external functions it did not find at compile time and attempt to located them at link time. If it still can't find them, it will issue an error at that time.

Example: Functions and Function Prototypes

To illustrate the use of user-defined functions, we'll walk throught the development of a piece of code which performs a simple task which should illustrate many of the ins and outs of simple function use. The problem is to write a program which calculates the area of a sector (a pie slice) of a circle. The user will supply the diameter of the circle and the number of degrees that the sector occupies.

Normally when you write a function, especially if you're new to the game, you should get the functionality working within a short self-contained program and worry about converting it to a function later. For the problem at hand, the initial effort might look like:

#include "C:\TOOLS\TC\MYINCLUD\SYMBOLS.H"

main()

{

// User supplied information (in final function)

float		dia;				// Diameter of circle

float		arc;				// Number of degrees in sector;

// Function generated information

float		full_area;		// Area of a full circle;

float		arc_area;		// Area of the sector;

// Simulate user input of data

dia = 10.0;

arc = 90.0;

full_area = PI * (dia / 2.0) * (dia / 2.0);

arc_area = full_area * (degrees / 360.0);

printf("Diameter = %f, Sector = %f degrees, Area = %f.",

			dia, arc, arc_area);

}

Notice how we have used the symbol PI from SYMBOLS.H in a new application already. Once you get the functionality to work as desired, you can turn this into a function very easily following four steps.

1>	Move the relevent code to a free area of the file (usually the bottom).

2>	Create a function declaration where the user supplied variables are moved into the argument list.

3>	Add a return statement to pass the return value back to the calling program.

4>	Create a function prototype at the top by copying the declaration and ending it with a semi-colon.

The final result would be:

#include "C:\TOOLS\TC\MYINCLUD\SYMBOLS.H"

float		sectorArea (float dia, float arc);

main()

{

float		dia;					// Diameter of circle

float		sector_deg;		// Number of degrees in sector;

float		area;					// Area of Sector;

dia = 10.0;

sector_deg = 90.0;

area = areaSector(dia, sector_deg);

printf("Diameter = %f, Sector = %f degrees, Area = %f.",

			dia, arc, area);

}

float		sectorArea (float dia, float arc)

{

float		full_area;		// Area of a full circle;

float		arc_area;		// Area of the sector;

full_area = PI * (dia / 2.0) * (dia / 2.0);

arc_area = full_area * (degrees / 360.0);

return(arc_area)

}

Local Variables

One of the important concepts to grasp at this point is the notion of local variables. Any variable that is defined within a function, including main(), only has meaning within that function. If, in a different function, a variable with the same name is defined, it is a separate variable than the first and the two have no connection. It is similar to a telephone number. A given number has meaning only within the area code in which it is defined. If that same number is used in a different area code, it is a completely separate phone number with no relation to the other.

For this reason, the name of the argument passed to a function when that function is invoked is completely separate from the name of the variable used in the function definition. The user is free to name their variables anything they choose without fear of interfering with the operation of the function or affecting the contents of variables in the calling function. What actually happens when a function is called is that the values of the variables being passed to the function are copied to an area of memory called the stack. For those familiar with RPN calculators such as Hewilett Packard, a similar stack structure is used. It is the values on the stack that are used by the function. The original values are left unaltered. In fact, the function has no way to alter them because it doesn't know where in memory they are stored. This means of transferring data to a function is called passing by value.

It is also possible to tell the function where the actual variable from the calling function is stored so that it may change it directly. This is called passing by reference and involves the use of pointers. This is a straight forward process and the interested reader should consult nearly any C programming reference for deatails.

Single-File Programs

Generally, each program file containing support functions will have an associated header file with the same filename. The program file with your main() may or may not have its own header file and there may be other header files having no associated program file. As you begin to write programs, you should gain an awareness of the usefulness of header files and when and how they should be employed.

As mentioned earlier, C allows your program to consist of a single source code file. In this case, you are not required to have a project file and when you compile your program, the compiler assumes that the current file is your sole program file. You are still allowed to use header files since the information in a header file in incorporated into the program through the use of the #include directive before going to the compiler.

Preprocessor directives

Preprocessor directives are commands which are evaluated and executed prior to code compilation. They are identified by a "#" prefix, such as #include, #define and many others. As stated in the introduction, these preprocessor directives are one of the aspects of C which gives it enormous flexibility. For example, it is common to write code which can run on many different hardware platforms. This is done by selectively compiling different portions of the code based on what platform is chosen. This is carried out by preprocessor directives such as #define and #ifdef...#else...#endif directives. Even in small programs running on a single platform, these tools can be used to significant benefit. By defining quantities, especially constants, in a #define statement and then referencing those definitions in the body of the code, not only is readability enhanced, but so is maintainability.

In your first C programs, you will probably use only two of the available directives - #include and #define. These two are described below.

#include

Format:

#include <filename.h>

or

#include "[drive:][path\]filename.h"

The #include directive takes the contents of the file 'filename' and inserts it into the code at the location of the directive. Once excecuted, the directive itself is removed from the code. It should be noted that the file itself is not modified and these changes are transparent to the programmer. What actually happens is that a copy of the code is made in memory and this copy is modified and sent to the compiler.

The argument given to #include must include the file's extension. This is almost always ".h" although there is no restriction requiring it to be so. However, it is good practice in any profession to avoid deviating from accepted conventions without a very good reason.

If the argument is surrounded by angle brackets (<, >) then the pre-processor looks for the indicated file in a specific directory known as the Standard Include Directory. The location of this directory is known to Turbo C and can be changed.

If the argument is enclosed in quotes (", ") and a drive and/or path is provided, then Turbo C looks for the file only in the indicated location. If no drive or path is specified, Turbo C looks first in the current directory. If it fails to find it there, it looks in all of the directories indicated in the current DOS path. Failing that, it makes one last attempt to find it in the Standard Include Directory.

#define

Format:

#define STRING_1 STRING_2

The #define directive replaces all occurances of STRING_1 with STRING_2. There are a few restrictions on which characters can be used to make up STRING_1 since the #define can also be used to create macros. Consult a C programming reference for more information on this. The key restriction to remember is that STRING_1 can have no whitespace characters in it (a space or tab for instance). The reason is that the pre-processor uses the first whitespace character as the delimiter between STRING_1 and STRING_2. On the other hand, no such restriction is imposed on STRING_2. The pre-processor takes STRING_2 to be all characters beginning with the first non-whitespace character after STRING_1 through and including the last non-whitespace character before the carriage return.

Example illustrating the use of #define

Consider the following program:

main()

{

int 		i;

float		t,y;

t = -5.0;

for (i = 0; i < 40; i++)

	{

		y = 0.5 * sin(6283.2 * t);

		printf("%f,%f",t,y);

		t += 0.50;

	}

}

Can you tell what this code does? If you figured out that it prints 40 values of a 1Vpp, 1000 Hz sine wave with time running from -5.0 sec to +15 sec you'd be close - but wrong. The last data point is actually t = +14.5 sec. Knowing all of this, if asked to modify the code to print out 50 values of a 600 Hz sine wave with 2.5 Vpp running from -30.0 sec to +10.0 sec could you do it quickly and accurately. How many calculations would you have to do to figure out what values are affected and what their new values are? Remember, this a very small program; in practice, it would be a very small portion of a program which might be thousands of lines long and you must track the changes throughout this program.

What if the code read:

#define		PI				(3.14159265359)

#define		DATA_PTS	(40)

#define		T_START 	(-5.0)		

#define		T_STOP		(15.0)

#define		FREQ			(1000.0)

#define		V_PP			(1.0)

#define		DT				(T_STOP - T_START)/(DATA_PTS)

#define		OMEGA			(2*PI*FREQ)

#define		V_AMP			(V_PP/2.0)

main()

{

int 		i;

float		t,y;

t = T_START;

for (i = 0; i < DATA_PTS; i++)

	{

		t += DT;

		y = V_AMP * sin(OMEGA * t);

		printf("%f,%f",t,y);

	}

}

Yes, the program listing is longer to accomplish the same thing; however, the code seen by the compiler (after the preprocessor directives are carried out) will be identical, even to the point of the last data point being at +14.5 sec. But notice how much more readable the code is despite the fact that not one single comment has yet to be added. Just as important, since the entire code is keyed to the #define statements, which are usually located in the header file or on the first page of the code listing, it is easy to review and update the settings within the entire code, even if its thousands of lines long.

Let's say that you implement this code and then discover the error in the final value at run time, which is almost always when these kinds of errors are found. If you have figured out why the original code did not finish at t=+15.0 sec, you know that you need to divide the time range by one less than the number of data points (i.e., by the number of intervals used to span the time range). This correction can now be easily added by changing the #define statement for DT from

#define		DT				(T_STOP - T_START)/(DATA_PTS)

to

#define		DT				(T_STOP - T_START)/(DATA_PTS - 1)

To make the modifications mentioned previously, it is only necessary to do the following:

#define		DATA_PTS	(50)

#define		T_START 	(-30.0)		

#define		T_STOP		(10.0)

#define		FREQ			(600.0)

#define		V_PP			(2.5)

There are several key observations that should be made here:

�SYMBOL 183 \f "Symbol" \s 10 \h�	All of the changes were made within one small section of the code listing.

It was not necessary to search the entire code for affected lines.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Values which are needed by the program, such as the time increment, the amplitude and the frequency in radians per second, are keyed to the #defines which the user changes.

Since these values can be determined based upon other values set by the user, they are not independent quantities and can therefore not be set arbitrarily. By not requiring the user to calculate them, a common source of math and logic errors is eliminated.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The #defines which the user can change and those that they should leave alone are separated.

Normally, some comments would highlight this separation, but this code has been left intentionally uncommented.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Not one single line of the code itself had to be touched.

This is desirable because it emphasizes the point that the code is fundamentally performing the same function and, from a more practical standpoint, it reduces the risk of introducing errors into code which has been previously debugged.

As a note on programming style, constants defined by #define are usually all, or at least mostly, uppercase while program variables are all or mostly lower case. Again, readability and maintainability are the reason. If the constant DT in the above segment were instead written as dt, which is admittedly more intuitive due to its similarity to standard calculus notation, it would be easy to lose track of the fact that it's a constant and attempt to set its value to something else within the body of the code. Likewise, if a variable is in upper case, it is easy to forget that it is a variable and must therefore be initialized. Mistakes like these are very easy to make and extremely difficult to track down.

Example illustrating the use of #include

In the previous example, notice that PI was defined using a #define. You can imagine that this and many other items will have broad use in many of your programs. Therefore you might group them together into a file called SYMBOLS.H and put it into a directory called C:\TOOLS\TC\MYINCLUD. You might also want to further isolate that portion of the code which the user can change from that portion you want left alone. This might prompt you to gather the user-accessible #defines into a file called USER.H and the remainder of the #defines into SINEWAVE.H since SINEWAVE.C was the name of the source file. Now a listing of these four files would look like:

SYMBOLS.H (located in C:\TOOLS\TC\MYINCLUD)

#define		PI				(3.14159265359)

USER.H (located in the same directory as the program files)

#define		DATA_PTS	(40)

#define		T_START 	(-5.0)		

#define		T_STOP		(15.0)

#define		FREQ			(1000.0)

#define		V_PP			(1.0)

SINEWAVE.H (located in the same directory as the program files)

#define		DT				(T_STOP - T_START)/(DATA_PTS)

#define		OMEGA			(2*PI*FREQ)

#define		V_AMP			(V_PP/2.0)

SINEWAVE.C

#include "C:\TOOLS\TC\MYINCLUD\SYMBOLS.H"

#include "USER.H"

#include "SINEWAVE.H"

main()

{

int 		i;

float		t,y;

t = T_START;

for (i = 0; i < DATA_PTS; i++)

	{

		t += DT;

		y = V_AMP * sin(OMEGA * t);

		printf("%f,%f",t,y);

	}

}

Principal C Program Structures

Following is a short catalogue of the primary structures found in C programs. Keep in mind that the purpose of this handout is not to teach these structures, but to highlight common stumbling blocks for new C programmers using them. In keeping with this goal, structures which seldom present problems are merely listed without significant commenting.

Code Blocks

C works with blocks of code. Each block is treated as a single entity for the purpose of controlling program flow. These blocks can be (and except in the most trivial cases always are) nested within each other forming a heirarchy. Any given code block must be wholly contained within the block above it. By "above" we mean above it in a logical sequence as opposed to above it with respect to order of appearance in the code listing. In the code listing, a block will appear as a unit somewhere between the beginning and end of the block which is logically above it, see Fig. 2. This concept should quickly become clear as you work with C programs.

The simplest block of code is a single statement. To group multiple statements together into a higher level block, surround them with curly braces ({, }). This in a very important concept since almost all decision making statements in C control the execution of a single block of code.

Logical Tests, Operators and Expressions

If programs could only do a prescribed set of instructions in a fixed order, they would be of little use to us. Their strength lies in their ability to selectively execute one set of instructions instead of another based upon the outcome of a logical test. The result of a logical test is either TRUE or FALSE. If the expression upon which the test is made evaluates to any non-zero value, the logical test will evaluate as TRUE. In order to evaluate to a FALSE, the expression must return a zero.

Closely related to logical tests are logical expressions. A logical expression uses logical operators to evaluate a relationship and returns a zero (0) if the indicated relationship is FALSE, otherwise it returns a one (1) indicating that the relationship is TRUE. The logical operators are shown below:

= =	Logical Equality		!=	Logical Not Equal To

>	Logical Greater Than		<=	Logical Less Than or Equal To

<	Logical Less Than		>=	Logical Greater Than or Equal To

!	Logical NOT (Inversion)

&&	Logical AND

||	Logical OR

For each line that has two entries, a test made using the the operator in the first column will always return the opposite result compared to the same test performed with the second operator. In other words, the first operation is the inverse of the second. This property can often be used to streamline your code.

Return Values of Expressions

This is a good point to discuss the return value of an expression. In most languages, the expression

a = b = c + d;

would not be allowed because, while the expression 'c + d' has a return value that can be stored into the variable 'b', there is no defined return value for an assignment operation. In C, however, nearly every function or operation has a return value. This is one of the many properties of C that make the development of compact, powerful code possible.

The return value of an assignment operation is the value stored in the variable on the left hand side. Therefore, the value stored in 'a' above is the same as the value stored in 'b'. To improve the readability of this code fragment, it is a good idea to use parenthesis to set of the first assignment from the second as shown below.

a = (b = c + d);

Remember that logical expressions also have a return value. This makes code fragments like the following possible:

if(comparator = ((y = sin(x)) >= 0.0))

	{

		printf("The variable 'y' is set equal to sin(x)");

		printf("and the variable 'comparator' is '1' because");

		printf("y is positive (actually, nonnegative).");

	}

else

	{

		printf("The variable 'y' is set equal to sin(x)");

		printf("and the variable 'comparator' is '0' because");

		printf("y is negative.");

	}

The if() structure

The if() structure has the following format:

if (test_condition)

		execute_if_true_code_block;

else

		execute_if_false_code_block;

The else clause is optional; if excluded, then the if_true block is simply skipped if test_condition is FALSE and execution continues with the next block of code following the if() statement.

The while() loop

The while() loop is perhaps one of the most important program flow control devices, especially for control and signal processing applications. Its function, and that of its variants, is very straightforward.

while (test_condition)

		code_block;

One way to think of a while block is as an if() statement (with no else clause) executed repeatedly as long (i.e., while) test_condition continues to evaluate as TRUE. The first time test_condition evaluates FALSE (including the first time), code_block is skipped and excecution continues with the next block of code.

The for() loop

Let's look a little closer at the 'for' loop structure. Unlike most programming languages where the equivalent structure's definition only allows setting up the looping counter, C's for() statement offers a great deal more. It is easiest to see this by thinking of the structure as:

for (ini_a, ini_b, ini_z; test; inc_a, inc_b, inc_z)

		loop_code;

The for() statement has three arguments, separated by semicolons. The first, called the initialization argument, can be multiple statements (including function calls) separated by commas - a semicolon would be interpreted as the break between initialization and test. The initialization portion is simply a segment of code which is executed prior to the first test or pass through the loop. The second argument, called the test statement, must return a single value. The test statement is evaluated prior to each pass, including the first. If the return value is TRUE (i.e., non-zero) then the instructions within the loop are executed, otherwise control is passed to the next block of code. The final argument is the increment segment which, like the initialization portion, can consist of multiple, comma-separated statements. This segment of code is executed at the end of each pass through the loop (and before the test is performed prior to the next pass).

Unlike ForTran and most other languages, C's for() loop does not require an integer counter. In fact, it does not even require a counter. As long as some means is present of updating the variables upon which the test statement operates, the loop will operate properly even without an initialization or increment segment.

The above for() statement is functionally identical to the following while() structure:

ini_a;

ini_b;

ini_z;

while (test)

	{

		loop_code;

		inc_a;

		inc_b;

		inc_z;

	}

Utilizing these enhancements to the for() statement, we can rewrite our earlier program as

#include "C:\TOOLS\TC\MYINCLUD\SYMBOLS.H"

#include "USER.H"

#include "SINEWAVE.H"

main()

{

int 		i;

float		t,y;

for (t = T_START, i = 0; i < DATA_PTS; t += DT, i++)

	{

		y = V_AMP * sin(OMEGA * t);

		printf("%f,%f",t,y);

	}

}

The advantage of the above style is in the readability, even though it may not seem so at first. This is because the t = T_START and t += DT statements are now explicitly tied to the logic of the for() loop. As a result, when the code is read they will be viewed in this context. Since these statements exist solely due to the necessary book keeping they perform, it makes sense to place them within the for() definition. It is also convenient that they are not within the body of the loop's code block which can now be reserved for code which performs the meat of why the loop exists in the first place. The previous syntax makes it easy to forget these relationships, especially the t=T_START statement which is located physically outside of the loop. If the programmer wanted to move or copy the for() loop to another section of code, or another program, it would be very easy to overlook that statement with the result being an unitialized variable.

Statement Structure

The rule of thumb in C is that all statements end in a semi-colon. The reason is that, unlike BASIC, C does not require statements to exist on a single line and therefore ignores carriage returns and line feeds unless they are part of a literal string - in which case they are usually trapped as syntax errors. Since C ignores tabs and carriage returns, the compiler must have some other way of knowing when the end of a statement has been reached; the semicolon serves as the statement delimiter.

New users to C are often frustrated by the above rule because it appears that there are numerous exceptions to it. This situation arises, however, not because of exceptions to the rule (though a few do exist), but because of confusion regarding what is and what is not a C statement.

Preprocessor directives are not C statements; in fact, pre-processor directives are, as the name implies, processed prior to code compilation and are therefore never seen by the C compiler. The preprocessor uses carriage returns as its statement delimiter. This can be kept in mind by thinking of how the #define directive works. It performs literal replacement of one string with another throughout the remaining body of the code. Therefore, the code segment

#define	DELAY				delay(1000)

#define	MOTOR_KILL		d2a(0,0.0);

DELAY;

MOTOR_KILL

will work fine because the semicolon is provided in the MOTOR_KILL statement by the semicolon in the #define directive. If the MOTOR_KILL statement had been ended with a semicolon, the effect would have been two back-to-back semicolons which is the same as one statement followed by an empty, or null, statement. Most compilers will allow this. However, if the DELAY statement had not been followed by a semicolon, an error would have occurred because the compiler would not have known where the DELAY statement ended and the MOTOR_KILL statement started. In general, it is advised not to place the statement delimiting semicolon in a #define statement because this creates inconsistent code style - namely, some statements, such as MOTOR_KILL, appear not to end in a semicolon.

In addition to pre-processor directives, the various program flow control devices in C (if(), for(), while(), do(), etc.) also do not appear to end in a semicolon. They only appear this way because we break up these statements onto several lines to enhance readablility. For example, the if() statement below is written as a one line statement ending in a semicolon.

if (a < 0) a = -a;

When an if() is this simple, it is often written in just this form.

The if()-else structure is something of an oddball. This is because it is actually two statements back to back. The if() portion behaves just as it does when by itself, but the else statement is a special statement which only executes if the test in the if() statement immediately before it is false. This is a rare example of a C statement having a direct tie to another statement and as a result, the else statement can only appear immediately following an if() statement. Since they are so tightly bound, most people ignore the subtle detail that they are two different statements and treat them as one structure. As a result, the following two distinct statements

if(a < 0) a = -a;

else a = 0;

Are usually written as

if (a < b)

	a = -a;

else

	a = 0;

Although these types of statements truly are C statements, they are better thought of as program flow control devices in that they determine the order in which statements or blocks of statements are executed.

The easiest way to think of how these program flow control devices work is to remember that they control the execution of the next identifiable block of code. This might be a single statement ending in a semicolon or a number of statements surrounded by block delimiters (i.e., {}).

For example, consider the following code fragment:

while (h > HMIN)

	h /= (1.0 + HDIVISOR);

for (i = ZERO, h = PI; (h * ((float) i) < HMIN); h *= PI, i++);

while (i < POINTS)

	{

		if (h < HMAX)

			{

				printf("i = %d",i);

				h += HEIGHTperI * ((float) i);

			}

		else

			h -= 2.5 * HEIGHTperI * ((float) i);

		i++;

	}

printf ("\nFinal height = %f\n);

Do not worry about what purpose this code serves. For the most part it is junk code intended only to demonstrate a few points about program flow control.

The first structure (the first while() loop) executes a single line of code (the h /= ... statement) since this is the first identifiable block of code following the while() declaration. The second structure, the for() loop, doesn't execute any blocks of code because the first identifiable block of code is a null statement identified by the ending semicolon. Remember, if the for() statement were written on a single line, it would look like

for(ini;test;increment) statement;

which is exactly what we have in this block of code except that statement is empty or what is referred to as a null statement. To make this point explicit, to be more consistent with program style, to avoid creating the impression that the following statement is controlled by the for() and to highlight the point that such a trailing semicolon was not a mistake (which it often times is), it is common to place semicolons used in this fashion on the following line. such as

while (h > HMIN)

	h /= (1.0 + HDIVISOR);

for (i = ZERO, h = PI; (h * ((float) i) < HMIN); h *= PI, i++)

	;

while (i < POINTS)

You might be wondering why the for() loop is present if it executes no code. The answer is that in the process of performing its book keeping tasks, it is in fact doing something. In this case, it is setting the initial value of i and/or h based on the test (h * ((float) i) < HMIN. There are several common occasions where the use of a program flow control device, without any associated block of code, is useful.

The third structure (the second while() loop) controls the execution of a block of code containing two elements. The first element is the if()...else structure and the second is the i++ statement. Since it is desired to execute two code elements, surrounding them in braces (i.e., {}) is necessary. A similar situation is necessary in the if portion of the if() structure since two statements are executed if the test condition is true. In contrast, since only a single statement is associated with the else portion of the if() structure, no braces are needed, although they are not prohibited and might be included so as to present an appearance, as far as indenting goes, similar to the if portion.

PITFALL: False Nesting

Look at the following code segment:

y = 1.0;

if(a<b)

	x = 2.0;

else

	x = 3.0;

y = x * 2.0;

If a is less than b, the final value of y is 4.0 otherwise it is 6.0. On the other hand, consider the code:

y = 1.0;

if(a < b)

	x = 2.0;

else

	x = 3.0;

	y = 2.0 * x;

You might now think that the final value of 'y' if 'a' is less than be is 1.0. Actually, this code segment is identical (as far as the compiler is concerned) to the first. Remember that program flow devices control execution of the next identifiable block of code. For the else clause, this is the statement

x = 3.0;

The next line, even though visually it appears to belong in the else clause, is not part if the if-else structure at all.

You should be able to see from this example that it is very important to structure the visual layout of your code in a fashion which is consistent with the logical structure as seen by the compiler.

The following convention makes reading code very straightforward. Within a block of code, all structures at the same level of indentation are executed one after another and are controlled by the most recent structure having one less level of indentation. Violating this indenting convention does not make the code invalid, just very hard to read. Using the last segment as an example, almost anyone reading this code (most likely including the original programmer) will naturally associate the y=2x with the else portion of the if() structure.

PITFALL: Integer vs. Floating Point Calculations

A few cautions are in order concerning how C interprets expressions. There is a substantial difference between the way integer and floating point (float and double) values are stored in memory. As a result, the compiler (C or any other) must decide, based on your code, whether to perform integer or floating point arithmetic. Because of the speed and memory advantages of integer arithmetic, C will opt for it whenever possible. In order to optimize performance, C looks through the code for constant expressions and evaluates them before performing the bulk of the compilation. If it sees the expression x = 10 / 3, the result is likely to be 3 even though x may be defined as a float. Remember, C must decide how to evaluate 10 / 3 before it can proceed. The answer is to always write floating point expressions in the form x = 10.0 / 3.0. It is now unambiguous to the compiler exactly what you intend.

You may be thinking that the easiest way to avoid these integer arithmetic pitfalls is to always use floating point variables and values and to simply live with the speed penalty. Beside the fact that speed is usually a critical consideration in real-time control and signal processing programs, it is also a good idea to avoid the use of floating point variables, even with the use of type casts (discussed below), in many circumstances, such as indices to arrays or other applications where a change in the value by 1 could create serious problems. This is because when converting from a floating point to an integer, C (and almost all other compilers) performs straight truncation to the next lower integer. Hence 3.998789 would become 3 and �0.000203 would become �1. This last example is particularly serious with arrays because, worse than storing the information in the wrong place within the array, this will store the values in a memory location not even reserved for the array and which is probably being used for another purpose entirely.

GOOD STYLE: Type casts

The distinction between integer and floating point data can (and often should) be taken one step further. C offers what are referred to as 'type casts'. This means that, after an expression is evaluated, it is forced into the form indicated by the type cast. For instance

#define	(50)

x = 3.0 / (double) POINTS;

forces (50) to be represented as a floating point value before proceeding with the division operation.

Remember, the type cast is performed after the evaluation of the segment to be cast. Therefore

x = (double) (3 / POINTS)

will still yield zero, whereas

x = ((double) 3 / (double) POINTS)

will yield the expected value of x = 0.060.

GOOD STYLE: Parenthesis

Like most languages, C has an explicit order of operations which is consistent with the rules of algebra and other fields of mathematics. However, it is dangerous to rely on them for two reasons. First, unless your understanding of your compiler's order of operations is complete and accurate (and there are subtle nuances to this involving logical evaluations, pointer assignments and others), you are inviting the compiler to do something you didn't expect. Furthermore, even if the compiler does what you thought and wanted it to do, someone reading your code (or yourself at a later date) might misinterpret the code.

Consider, for example, the conversion from radian frequency to cyclic frequency (Hz). You might code this as

FREQ_HZ = OMEGA/2.0*PI;

At first glance, this looks fine because it reads like we think of it, namely w over 2p. However, the order of operations says multiplication and division are of equal precedence and are excecuted left to right. The result is that we are actual implementing (w over 2) times p.

To avoid this, be very liberal with the use of parentheses. Write the above segment as

FREQ_HZ = OMEGA/(2.0 * PI);

One of the earlier segments could even be written as

dx = (MAX - MIN)/(((double) POINTS) - 1.0);

By doing these things, There is no question as to what types are intended or the order in which an expression is to be evaluated. Don't be afraid of using parenthesis where they might not be required - better to err on the side of safety. By getting in the habit of being explicit in your expressions, you can avoid accidental logical errors such as typing

dx = (MAX - MIN) / POINTS - 1.0;

The rule of thumb is to not rely on the compiler's precedence of operations (e.g., * before +). This is asking for difficult to find errors.

PITFALL: Traps involving #define text substitutions

A trap which is easy to encounter are syntax errors created by text substitutions performed by the pre-processor directive '#define'. Worse, the code might compile but the results may be other than intended. Consider the following code portions:

#define MIN 		-5

#define MAX 		5

#define POINTS 50

double	dx;

dx = (MAX-MIN)/(POINTS - 1);

What the compiler sees, after pre-processing is:

double dx;

dx = (5--5)/(50-1);

This will result in a syntax error since the operator "- -" between the two 5's is not recognized. To eliminate this type of error, enclose all numerical constants in #define statements in parentheses. The code:

#define MIN 		(-5)

#define MAX 		(5)

#define POINTS	(50)

double	dx;

dx = (MAX-MIN)/(POINTS - 1);

will be seen as:

double dx;

dx = ((5)-(-5))/((50)-1);

This will compile, but will be interpreted as integer arithmetic resulting in dx = 0. If this were used to increment a variable in a loop, and the test to exit the loop were performed on this variable, the effect might lead you to believe that the program had crashed and locked up the computer. In reality, the program is merrily executing the infinite loop which you told it to perform. This is not an uncommon error.

Even with the debugging tools available with packages such as Turbo C, this is a tough problem to recognize because you and the compiler see two different things. To avoid this problem entirely, don't give the compiler any room to exercise its own judgment in these matters. Write:

#define MIN 		(-5.0)

#define MAX 		(5.0)

#define POINTS	(50)

double dx;

dx = (MAX-MIN)/(POINTS - 1.0);

which will be seen as:

double dx;

dx = ((5.0)-(-5.0))/((50)-1.0);

This will compile and perform as expected. You might ask why POINTS was left as (50) and not (50.0). This is because POINTS (the number of data points to take) is intrinsically an integer and is probably used with integer variables in other statements such as

float		data[POINTS];

and

for (i=0; i < POINTS; i++)

If (50.0) were used, these would attempt to compile as

float		data[50.0];

and

for (i=0; i < 50.0; i++)

The first will result in a compile time error while the second could result in an incorrect number of data points being taken which could in turn result in overwriting portions of memory not intended.

Another type of error which can result from a #define substitution deals with placing comments on the same line as a #define. This is will create problems since they will become part of the substituted string. For instance, the if() statement in

#define MIN 		(-5.0)	

#define MAX 		(5.0)

#define POINTS (50)			// Number of data points

double dx;

dx = (MAX-MIN)/(POINTS - 1.0);

will result in the following code being after preprocessing:

dx = (MAX-MIN)/((50)			// Number of data points - 1.0);

and since the compiler ignores anything on a line following a comment mark "//", the compiler will see:

dx = (MAX-MIN)/((50)

This type of error may or may not result in a compile time error. For instance, the following block of code will not only compile, but will run as intended:

#define	DELAY				delay(1000)

#define	MOTOR_KILL		d2a(0,0.0);	// Send zero volts to motor

DELAY;

MOTOR_KILL

whereas this code segment will yield valid code, but not the expected results:

#define	XSTART	(-12.0);	//	Starting value for x

x <= XSTART + 3.0;

If you make any of these mistakes, it may take some time to track it down because you can only view the code as it appears prior to the substitution, while the compiler only sees what the code looks like after substitution.

GOOD STYLE: Variable Names

Choose variable names which convey meaning and which , at the same time, are not misleading.

Consider the following code fragments:

a = 123.24;

b = 0.01;

c = a*b;

What is this piece of code doing? What if it were written as:

balance = 123.24;

interest_rate = 0.01;

interest_charged = balance * interest_rate;

Going back to the original code fragment, let's assume that after this calculation we no longer need to know the original balance (i.e., we have no further use for the variable 'a'). We might write this code as:

a = 123.24;

b = 0.01;

a = a*b;

It is perfectly valid code and it does save a little bit of memory since only two variables are used, but now the variable 'a' means one thing in one part of the code and something else in another part of the code. It is the same as writing

balance = 123.24;

interest_rate = 0.01;

balance = balance * interest_rate;

Again, valid code, but very misleading.

Clearly, there is an art to choosing variable names and, like nearly everything, it takes experience to get good at it. The key is to ask yourself if the name of the variable gives a good clue as to what information is stored in that variable.

GOOD STYLE: Single Letter Variables

There are certain conventions governing single letter variables. The rules derive from the normal use of variables and parameters in mathematics, particularly algebra, and are as follows:

�SYMBOL 183 \f "Symbol" \s 10 \h�	The first letters of the alphabet are usually used for constants or parameters (a,b,c and d particularly).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Middle letters are used as integers (especially i,j,k,l,m, and n).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Latter letters are used for floating point values (especially u,v,w,x,y and z).

Some compilers, like ForTran, impose these types of rules on your code by default. Even though C does not, you should still observe these conventions for readability sake. These rules also apply to multi-letter variables that are derived from single letters, such as x_min, i_last, xx, yz, abs_x, current_n, etc. While the first rule is weakly observed, adherence to the last two is strongly recommended.

PITFALL: Equality Comparisons

Equality comparisons use the logical equality operator (= =) as in the following code segment:

if(a = = b)

	printf("The two values are equal.");

A very common mistake, which is also a trick frequently used to write more compact code, is to use the equals sign (=) which is the assignment operator. While C may warn you about this, it is not illegal. Recall that the return value of an assignment statement is the value stored in the variable on the left hand side. If that value is non-zero, the test while evaluate as true and it will evaluate as false only if the value stored is equal to zero.

Another point to keep in mind is that a logical equality test is true only if both arguments are identically equal. Even a small difference will cause the test to fail. Therefore, avoid making equality comparisons on non-integer variables (e.g., if (x = = y)). The reason is that all floating point representations contain a small amount of round off error and the equality test is looking for exact equality. Instead, check to see if the absolute value of the difference between the variables is less than some threshold value.

Special Operators

The C language offers a host of special operators which are merely short-hand versions of common operations. At first they seem quite cryptic, but they quickly become very readable provided they are used appropriately.

The ++ and -- Operators

The need to increment or decrement integers is one of the most common operations in computing. As a result, C contains two very useful operators which carry out this task - the increment (++) and the decrement (��) operators. Each pair of lines in the following code segment are identical:

i = i + 1;

i++;

j = j -1;

j--;

In addition, the increment and decrement operators can come before of after the variable, but there is a subtle distinction. The return value of the expression is the new value of the variable if the operator precedes the variable (i.e., if the operator comes first, the operation is performed first). On the other hand, if the variable comes first, the return value of the expression is the original value of the variable. For example, the following code section:

i = 0;

j = 0;

while (i<2)

	fprintf("i = %d; j = %d\n",i++, ++j);

will produce:

i = 1; j = 0

i = 2; j = 1

A word of warning: the increment and decrement operators are intended for use with integer variables and may or may not work properly with floating point variables.

The +=, -=, *= and /= Operators

The += and -= operators add or subtract the amount on the right from the value stored in the variable on the left and store the resulting value in that variable. Similarly, the *= and /= multiply or divide the existing value of a variable by the quantity on the right hand side and store the result back in the variable.

For instance, the two following code blocks are identical:

i = 3;

x = 2.9;

i++;

i *= 4;

x += dt;

x -= (1.1 * dt);

i = 3;

x = 2.9;

i = i + 1;

i = i * 4;

x = x + dt;

x = x - (1.1 * dt);

These two operators work with integer or floating point variables. Note that there are no =+ or =-operators. This can be understood since there would be a strong ambiguity in statements such as

x =- 2.9;

By and large, C ignores whitespaces (spaces, tabs, carriage returns and linefeeds), so this statement is the same as

x = -2.9;

Are we setting x equal to a value of -2.9 or are we subtracting 2.9 from the present value of x and storing the result back in x?

The Conditional Operator

A very powerful operator is the conditional, which is really nothing more than a way of performing an if�then�else in a very compact form. The form of the operator is

(test)? (return_if_true) : (return_if_false);

For instance, to take the absolute value of a number, you could use the expression

x = (x>0) x : -x;

Or to walk a counter from zero through I_MAX steps and reset it after it reaches the final value, you could do the following:

i = (i < I_MAX)? i++ : 0;

By using these various operators, you can write very compact code. For instance

y = (sin((x += dx)) > 0)? (1.0) : (-1.0);

Generates a square wave with a period 2(ranging between +1 and -1.

As you have probably already observed, extensive use of these operators also leads to fairly cryptic code. This can be overcome by limiting the number of tasks performed by a single line of code to just one or two and, most effectively, by commenting the code properly.

�
C Programming Standards

The largest single cost in the software industry is software maintenance - correcting, updating and improving existing software. To keep these costs under control, it is vital that people other than the original programmer be able to readily interpret a piece of code. One of the biggest steps to ensure this is to require each programmer to adhere to a common set of standards, known as programming style. Standardization is not limited to the software industry, imagine purchasing a replacement battery for your flashlight if all battery manufacturers did not adhere to common standards for terminal voltage and shape or physical dimensions.

If you have studied the previous material regarding the C programming language, you have already been exposed to most of the guidelines which make up this set of standards. The purpose of this section is to summarize these guidelines in one place.

Global variables

Your code should not have any global variables. Global variables have there place in the field of programming, but most programs which you will write do not need them and they invite many problems. If you feel that a global variable is most appropriate (notice the use of the word 'appropriate' as opposed to the word 'convenient') for a particular use in one of your programs, you had best make a good case for that decision in the program documentation.

Indenting

Code should be indented according to its level. This means that all of the statements which are controlled by a particular line of code should be indented more than the controlling line. The amount of each indent should be consistent, two spaces works well. Where braces are used, the open and close braces should be vertically aligned with no text (including comments) directly between them. In other words, all statements contained in a brace-delimited block of code should be indented more than the braces. This makes the structure of the code very clear and allows for easier debugging since matching braces and the manner in which they nest is readily apparent. It is not necessary to indent the main braces or the highest level of code in each function.

#definitions

You should use #define preprocessor directives liberally. Any place where a user defined quantity which is constant throughout the code but which might change from one compilation to the next is an example of where a #definition is appropriate. All #define labels should be all, or at least mostly, upper case.

Variable Names

Use meaningful variable names. You are also expected to adhere to the conventions mentioned in the previous section on this topic. All variable names should be all, or mostly, lower case.

Comments

Document your code with ample comments. If you have organized your code well, selected truly meaningful variable names and #define labels and been consistent in their use, your code will be largely self-documenting and you can focus on adding comments where they are most effective. Where they are especially appropriate is anyplace where your are doing anything complicated or out of the ordinary. If you devise a little trick to increase program performance, you should comment this portion especially well.

Unused Code

Delete portions of code which serve no purpose. As you develop code from one project to the next, you will often find yourself commenting out sections of code which no longer apply. Do not leave this unused code in the final version since it tends to make reading the code quite difficult.

Functions

Use functions to keep your main() lean. Your main() function should be quite short, usually less than a page and often less than one screen length. The statements in main() should reflect the high level tasks which your code is implementing and should rely heavily on function calls to do the nuts and bolts work.

Hardcopy Verification

Make sure your print-out matches your screen display. You may find that the indenting in your printout does not even remoteley resemble what your code looked like on the screen. This is usually due to a difference in interpretation of where the tab stops are located. A good way to do this is to import your code into a word processor and format it there. Remember, it is the hardcopy of your code which becomes part of your documentation and it is your responsibility to make sure that the hardcopy conforms to the expected standards.

�PAGE�30�

