
The Glowworm hash: Increased Speed and Security
for BBC Unkeyed Jam Resistance

Leemon C. Baird III,
Martin C. Carlisle,

and William L. Bahn
Academy Center for Cyberspace Research

Computer Science Department
US Air Force Academy

USAFA, Colorado 80840
Email: Leemon@Leemon.com

Eric Smith
Email: eric@brouhaha.com

Abstract—Jam resistance for omnidirectional wireless net-
works is an important problem. Existing jam-resistant systems
use a secret spreading sequence or secret hop sequence, or
some other information that must be kept secret from the
jammer. There is currently only one system for achieving such
jam resistance without any shared secret: BBC coding. BBC
requires the use of a hash function that is fast and secure, but
”secure” in a different sense than for standard cryptographic
hashes. At MILCOM-2010, the Inchworm hash was presented
[1], which is 300 times faster than SHA-1 for this application,
and had no security flaws yet known. A variant of it, Inchworm-
S, was also presented, that was intended to be more secure. We
present an academic break of both Inchworm and Inchworm-
S, and a practical break of the former. The advantage to
the attacker is very small, but it is definitely detectable. We
also present a new hash algorithm: Glowworm. Glowworm is
simpler than Inchworm, and the same speed as Inchworm-S,
while being more secure. We mathematically prove that it is
immune to the theoretical attack we show for Inchworm and
Inchworm-S. We also show empirically that it is immune to our
empirical attack on Inchworm, even when the attack algorithm
is run for much longer periods. In fact, we show that for
our best attack software, it is indistinguishable from SHA-1,
MD5, and all five SHA-3 candidates. We also mathematically
prove that it has avalanche properties that prevent many other
types of internal-state collisions and related attacks. We give
an optimized, portable, C implementation of Glowworm. For
incremental hashes as used in BBC codes, it can hash a string of
arbitrary length in 11 clock cycles. That is not 11 cycles per bit
or 11 cycles per byte. That is 11 cycles to hash the entire string,
given that the current string being hashed differs from the last
in only an addition or deletion of its last bit. Finally, we discuss
our implementation of Glowworm in a Field Programmable Gate
Array (FPGA), where it runs in just one clock cycle per string,
using only a modest amount of resources. 1

1This work was sponsored in part by the Air Force Office of Scientific
Research (AFOSR). This material is based on research sponsored by the
United States Air Force Academy under agreement number FA7000-10-2-
0044. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the United States Air Force
Academy or the U.S. Government.

I. INTRODUCTION

Jam resistance is an important problem for omnidirectional
radios. In most systems, this requires some form of shared
secret, such as a chip sequence or hop sequence that is kept
secret from the jammer. For large radio networks, especially
ad hoc networks, this can cause a difficult key management
problem. Only one system currently achieves jam resistance
without a shared secret: the BBC (Baird, Bahn, Collins)
concurrent code [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. The BBC signal is
transmitted with no shared secret. The receiver then decodes
it using the process in figure Fig. 1.

The radio receives the packet shown at the top of the
figure, which in this example has 18 positions, of which 5
are marks (shown as gray 1 bits). Each mark might be a pulse
of broadband radio noise at a given point in time, where there
are 18 possible times shown. Or each mark might be an entire
chip sequence, shifted by some amount in time, where there
are 18 possible shifts shown. Or each mark might represent
energy being broadcast at a single frequency, where there are
18 possible frequencies shown. In every case, the send expends
energy to create a mark, and the receiver can then detect the
mark.

This packet is decoded by a depth-first search on the tree
at the bottom. Each vertex contains a string, to which a 0 is
appended for the left child and a 1 for right. A vertex is gray
if the hash of its string (shown in the middle) yields an index
into the packet at a position with a mark. It is white if there
is no mark there.

The decoder performs a depth-first search of the tree,
hashing each vertex and checking for a mark in that position
in the packet, to see whether to continue down or to backtrack.
The received ”message” is any gray string found on the 1000th
level of the tree (possibly with some additional filtering).

The jammer must pay an energy cost to broadcast each
mark, and the legitimate receiver must pay a computational
cost for each vertex in the decode tree. So a successful
jamming attack would have few marks in the packet, but

001	
 000	
 100	
 101	

00	
 01	
 10	
 11	

0	
 1	

1010	
 1011	

1	

17	
 0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

0	
 0	
 0	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 1	
 0	
 0	

H(1011)=3	

H(001)=3	

H(1010)=9	

H(000)=9	

H(11)=14	

H(01)=17	

H(100)=6	

H(101)=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H(00)=7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H(0)=12	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H(1)=5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H(10)=12	

Fig. 1. Use of a hash in BBC decoding. The receiver detects the packet
at the top, and decodes it by a depth-first search of the tree at the bottom,
using the hash values shown in the middle. A string in the tree is defined to
be a non-leaf (gray) if its hash returns the index of a position in the packet
containing a mark (a gray 1).

many vertices in the tree. Thus the jammer wants many hash
collisions. This example shows only 3 collisions, at positions
3, 9, and 12.

The BBC algorithm can use any hash function, but the
security of BBC depends on the choice of hash. A random
function would be good. That is a function chosen at random
from the space of all possible functions. It is commonly
considered in theory, but impossible to achieve in practice:
a computer creating such a random function would require
more atoms than exists in the known universe.

A cryptographic hash such as SHA-1 [20] would presum-
ably also be good, because it is designed to be indistinguish-
able from a random function with any reasonable amount of
analysis. But cryptographic hashes are designed to have a
different type of security, and so are not optimized for this
problem. A hash like SHA-1 has many bits of output, and
is designed to make it difficult to find two strings that yield
the same output, even when searching for long periods on a
supercomputer. The hash for BBC will have a small output of
at most 20 or 30 bits, so it is easy to find such collisions. The
security for BBC will depend on whether it has the property
that it is difficult to find a packet with few marks that results
in a large decode tree. So a few collisions are acceptable (and
inevitable), but it is bad if there are many collisions that are
adjacent in the tree, and so form a rooted subtree of colliding
strings.

In addition, BBC decoding consists of doing a depth-first
search of the string tree and hashing all the strings in that
order. That means that each string to be hashed differs from
the last by either the addition or deletion of a bit from the end

of it. It is therefore useful to design a hash to be incremental
in its last bit, in order to be a fast hash for BBC.

II. THE INCHWORM HASH

The Inchworm algorithm is shown in Figure 2, and was first
published in MILCOM-2010 [1]. It hashes a string bit by bit.
To hash the next bit, it retrieves the next word from the buffer
(a shift register of 31 words of 64 bits each), and XORs it with
one of the two registers R and S. It XORs a constant with the
other register. The bit being hashed determines which of the
two buffers will be modified.

This approach was used to guarantee that calculating H(x0)
and H(x1) could not result in the same values for both R and
S, no matter what string x is. Clearly, H(x0) and H(x1) can
both result in the same value for R only if the word read from
the buffer is equal to C. But C and D are not equal to each
other. So it must not be equal to D. So S must not be the
same after both H(x0) and H(x1). Similarly, if they cause S
to collide, then R won’t. So Inchworm effectively makes one
kind of internal state collision impossible.

Unfortunately, other forms of collision may still be possible.
It might be possible for the calculation of H(x01) and H(10)
to result in the same R and S register values. That could
happen if two consecutive words in the buffer happened to
have just the right relationship to achieve that. If two machines
are hashing in parallel, their R and S registers would become
unequal after hashing H(x0) and H(x1), but then would
become equal again after H(x01) and H(x10). The singe
iteration where they are different would force one word of
the buffer to differ between the two machines. But after
R and S become the same again, the two machines could
remain in sync for the next 30 iterations, before they wrapped
back around to that spot in the buffer. Thus we would have
H(x01y) = H(x10y) for any string y that is of length 30
or less. This would mean that in the decode tree, an entire
subtree of 230 vertices would have the same hash values as
another subtree of 230 vertices. So the attacker could force the
receiver to do twice as much computation for a given amount
of energy expenditure on the attacker’s part.

This is a problem. A BBC hash needs to avoid such colli-
sions of its internal state. The Glowworm hash was designed
to make such collisions impossible.

III. THE GLOWWORM HASH

The Glowworm hash is designed for BBC decoding, so it
needs to be fast for incremental hashing. It is used to hash
each string in a long sequence of strings, where each string is
identical to the previous except for a single bit that is added
to or deleted from the end of the string. So, as the string is
growing, the system is fed one bit at a time, using each one to
update its internal state, and outputting a hash after each bit.
When the string is shrinking, it needs to undo those growth
operations. So we need an invertible operation.

For invertibility, an obvious candidate would be an unbal-
anced Feistel operating on the buffer. The following is such a
system, where n is the length of the last string hashed, and s is

R
(64 bits)

<<< 37

S
(64 bits)

<<< 39

B
(31-word shift register of 64-bit words)

 Hash(b1…bi) bi

D

C

f

Fig. 2. The Inchworm hash. The + in a circle is an XOR. All arrows carry 64-
bit words (except the one from bi, which is a single bit). The switch connects
along either solid or dotted lines, depending on the bit being hashed. The bits
of the string are consumed one by one, and each time a word is modified in
the big shift register. Also, two small registers R and S are updated, one by
XORing with a word from the buffer, and one by XORing with a constant.
The choice of register is controlled by the bit being hashed.

the ring buffer used for the internal state. An element s[i] is a
64-bit word, which is the ith element of that buffer, wrapping
around if necessary, when the index i becomes too large for
the buffer. The buffer is 32 words, for a total of 2096 bits.
This is good, because the Small Internal State Theorem [21]
says that the size of the buffer must be a large fraction of the
length of the longest string that will be hashed, and should
be twice that to avoid birthday paradox attacks. Since BBC
generally hashes strings up to about 1000 bits, the internal
state should be on the order of 2000 bits. So 2096 is a good
size. In addition, the mathematical analysis in the next section
shows that having more than 32 elements in the buffer could
be a problem, because certain types of collisions are only
guaranteed to be avoided for 32 iterations. So a buffer size
of 32 elements is ideal on multiple grounds.

The Glowworm algorithm is shown in Figure 3. It is simpler
than Inchworm, using only the buffer, without the two extra
registers. In fact, it is so much simpler, that the figure actually
shows the entire content of the f function, which is just shown
as a single block in the Inchworm diagram.

The nonlinear f function for Glowworm is similar to that
in Inchworm-S, but uses shifts rather than rotates. This makes
it easier to port, since the GCC compiler sometimes fails to
compile rotations to a single rotation instruction, depending on
the surrounding code. Shifts always compile correctly. More
importantly, the use of shifts allows the flow of information
to be better controlled, which is necessary to achieve the
properties that are mathematically proved in the next section.

The algorithm for hashing the next bit will be very simple.
It will grab the current element from the shift register, apply
an arbitrary f function to it and the bit to hash, and XOR the
result into the next buffer element, and return that same result
as the hash. The return statement at the end returns a 64-bit
value, but only the 32 least significant bits should be used as
the hash value. If fewer than 32 bits are needed, then only

s
(32-word shift register of 64-bit words)

 Hash(b1…bi)

bi * (232 - 1)

>> 4

>> 8

>> 16

>> 32

>> 1

<< 1
V	

Fig. 3. The Glowworm hash. The + in a circle is XOR, and the v in a circle
is OR. All arrows carry 64-bit values. The >> symbol is a right shift, and
<< is left.

the least significant bits should be taken. If it is desired for
the hash to output an integer in the range from 0 to N − 1
for some N < 232, then the hash is defined to be the 64-bit
returned value, taken modulo N .

//If the last hash was of a string of length n,
//then concatenate bit b to the end,
//and return the hash of the resulting string.
GlowwormAdd(b):

t = s[n]
L++
s[n] ˆ= f(b, t)
Return s[n]

This pseudocode uses C notation, so L + + increments L,
and x=y changes variable x to contain the bitwise XOR of x
and y. All variables and buffer elements are 64-bit unsigned
integers, except for b, which is a single bit. As the string grows,
this walks through the buffer, changing one word after each
bit is received. A given word is changed by XORing it with
a function f of both the previous word and of the current bit
being added to the string. Note that this is reversible given
the bit, even if the f function is not itself reversible. So the
following will reverse it, regardless of the choice of f .

//If the last hash was of a string of length n,
//ending with bit b, then delete that bit,
//and return the hash of the resulting string.
GlowwormDel(b):

n--
GlowwormAdd(b)
n--
Return s[n]

This works because GlowwormAdd changes one word by
XORing it with the output of f , and GlowwormDel simply
XORs the same word with that same value, thus canceling
out the original XOR. Note that the caller must store the
string being hashed, in order to know what bit to pass to
GlowwormDel. Glowworm itself stores only the length, n.

This is much simpler than the Inchworm algorithm. In

Inchworm, there were two registers in addition to the big
buffer. Each register was constantly rotating at a different rate,
and data from the buffer was constantly being transferred to
the registers. In Glowworm, all of that is gone. Theres simply
a single buffer, and the algorithm merely walks around the
buffer, changing each word as it goes.

The Feistel structure shown above can be very strong or very
weak, depending on the choice of f function. For Glowworm,
we define that function as follows.

f(b, t):
t ˆ= b * 0xffffffff
t = (t | (t>>1)) ˆ (t<<1)
t ˆ= (t>>4) ˆ (t>>8) ˆ (t>>16) ˆ (t>>32)
return t;

Given the bit b, the f function is almost invertible. The first
line is its own inverse. Executing it a second time would undo
the first execution. The third line is almost its own inverse. Its
execution can be undone by executing a line that is identical,
except the shifts {8, 16, 32} are replaced with {12, 28, 60},
respectively.

The second line is almost invertible. Given the new value
of t after the line is executed, it is impossible to know the
most-significant bit of t before it was executed. But given that
bit, the other 63 bits can be recovered. So it loses only one
bit of information on each execution, and always has exactly
two preimages. It would have been easy to make this line
completely invertible, if Glowworm had been defined with this
as its second line, instead:

t = (((t & (t>>1)) ˆ (t<<1)) | 1) ˆ (t>>63)

That would have been invertible, and doesn’t look any less
secure. But it would have been slightly slower. And there
is no obvious advantage to making f itself invertible, since
Glowworm as a whole is invertible regardless of whether f
is invertible. So Glowworm was actually defined with the
simpler, almost-invertible version of this line.

Glowworm is very simple. It was defined above in just a
few lines of pseudocode, and it has no internal state other
than a simple buffer. And it is almost entirely linear. The ”|”
symbol in the second line of f is a bitwise OR, and is the only
nonlinear operation in the entire Glowworm algorithm. The
multiplication in the first line is linear, because it is actually
just a way to make 32 copies of the bit b. The incrementing
and decrementing of n are actually linear, because they are
just ways to implement rotations in a shift register. So that
single OR remains the only nonlinear operation in the entire
hash algorithm. This aids in analyzing it, and makes it possible
to prove the theorem in the next section.

A fast, portable C implementation of Glowworm is given
in figure 4.

IV. MATHEMATICAL ANALYSIS OF GLOWWORM

Glowworm has security properties that can be mathemat-
ically proved, that prevent the attacks that were possible on
Inchworm. The following theorem shows both avalanche and
anti-collision properties. It refers to the internal state, which

// Glowworm - A hash for use with BBC codes
// April 2012, Version 1.0
// Leemon Baird, Leemon@Leemon.com
//
// Call glowwormInit once, which returns the hash of the
// empty string, which should equal CHECKVALUE. Then
// call AddBit to add a new bit to the end, and return the
// hash of the resulting string. DelBit deletes the last
// bit, and must be passed the last bit of the most string
// hashed. The macros should be passed these:
// uint64 s[32]; //buffer
// static uint64 n; //current string length
// uint64 t, i, h; //temporary
// const uint64 CHECKVALUE = 0xCCA4220FC78D45E0;

typedef unsigned long long uint64; //64-bit unsigned int

#define glowwormAddBit(b,s,n,t) (\
t = s[n % 32] ˆ ((b) ? 0xffffffff : 0), \
t = (t|(t>>1)) ˆ (t<<1), \
t ˆ= (t>>4) ˆ (t>>8) ˆ (t>>16) ˆ (t>>32),\
n++, \
s[n % 32] ˆ= t \

)

#define glowwormDelBit(b,s,n,t) (\
n--, \
glowwormAddBit(b,s,n,t), \
n--, \
s[n % 32] \

)

#define glowwormInit(s,n,t,i,h) { \
h = 1; \
n = 0; \
for (i=0; i<32; i++) \

s[i]=0; \
for (i=0; i<4096; i++) \

h=glowwormAddBit(h & 1L,s,n,t); \
n = 0; \

}

Fig. 4. C implementation of the Glowworm hash.

is all 2096 bits in the buffer. It also refers to the fast internal
state, which is the 64-bit word that changes on each iteration,
which is also the output of the hash on each iteration.

Theorem 1: If two machines run Glowworm in parallel on
two strings, their internal states will be identical until they
reach the first bit where the two strings differ. Their internal
states will then continue to differ for 64 iterations, regardless
of what the two strings contain after that point. The fast
internal states will differ for at least the first half of that (32
iterations), at the end of which, each of the 32 words in the
buffer of one machine will differ from the corresponding word
in the buffer of the other machine.

Proof : First, consider the second line of f , run on two
machines which at that point have different values for t.
Suppose the two t registers differ in one or more bits, the most
significant of which is in position p. Then after executing the
second line, they are now guaranteed to have a most significant
differing bit in position p + 1 (where the least significant
bit is position 0, and the most significant is position 63). In
other words, differences ripple to the left (toward the more
significant bits), moving one bit position per iteration.

This rippling effect is because all of the shifts in f are right
shifts, except for the single left shift in the second line. In that
case, t is shifted left by only a single bit position, and it is then

XORed into t. So as long as the two machines have identical
words coming in from the buffer, the f function will ensure
that the leftmost difference will move left at a speed of one
bit per iteration.

This ensures that as new bits are hashed, their effects slowly
ripple leftward into more significant positions, and the effect
of any given bit that is hashed lasts for at least 32 steps. This
guarantees that if two machines are hashing in parallel, as soon
as they get to a differing bit in their respective strings, their
fast state will start to differ. And they will continue to differ
for at least 32 steps. But the buffer is only 32 words long, so
that means that after 32 iterations, every single word in one
machine’s buffer will differ from the corresponding word in
the other machine’s buffer. And it will take at least another
32 steps to work its way around and bring all 32 words back
into sync. Thus the theorem is proved.

This kind of avalanche analysis proves Glowworm can
never be broken with the theoretical attack that worked on
Inchworm. Furthermore, any kind of internal collision will be
very difficult. Any such collision will end up trying to get all
2048 bits of one machine to collide with the other, which on
a random function by the birthday paradox might be expected
to require 21024 tries, which implies that internal hashes might
be expected to happen only with strings that are at least 1024
bits long. But BBC was designed with the assumption that the
strings being hashed would never be more than about 1000
bits long. So such a collision is not a problem for BBC.

Other attacks may still be possible on Glowworm. But none
are yet known. And the guarantees presented here are much
stronger than were available for Inchworm.

V. EMPIRICAL ANALYSIS OF GLOWWORM

We now propose an algorithm for generating attack packets.
We give empirical results that show that this algorithm is
able to find attack packets that cause more work for the
receiver when using Inchworm than when using Inchworm-
S, Glowworm, and standard cryptographic hashes. Therefore,
this constitutes a break of Inchworm. Glowworm is immune
to this particular attack. We were unable to find an empirical
attack that was successful against Glowworm.

The algorithm starts with a packet of all zeros. Then,
whenever the packet is less than or equal to one third full
of marks, it adds a mark to it, in the location which causes
the most growth in the decode tree. Whenever the packet is
more than one third full of marks, it removes a mark, choosing
the mark that will result in the least shrinkage of the decode
tree. The greedy algorithm continues until it reaches a cycle of
constantly adding and removing the same mark. At that point,
it stops, and outputs the the size of the decode tree.

We compared two hashes by comparing the distribution of
trees sizes generated by each. When we compared Glowworm
and SHA-1 on a million runs each, the Cramer von-Mises
statistical test found no statistically-significant difference in
their distributions. We found that to be true when comparing
any pair of algorithms from the set of Glowworm, SHA-1,
Inchworm-S, MD5, and all 5 of the SHA-3 candidates. We

therefore conclude that all 9 of these hashes are indistin-
guishable from a random function, at least as far as could
be determined by this greedy attacker with one million runs
each.

However, the Cramer von-Mises test found that Inchworm
was different. It generated packets that required more com-
putation for the receiver to decode. The amount was small,
less than one percent, but the difference was statistically
significant. Therefore, this is definitely a deviation from the
behavior of a random function, and is certainly a break in
Inchworm, even though it is only a small break so far. It would
not be surprising if it could be a large break.

We also ran the test on 64 variants of Glowworm. Glow-
worm uses a set of shifts of 4,8,16,32 in its linear stage. A
variant of Glowworm could be formed by using the shift set
1,2,4,8,16,32, or using any subset of that, including the empty
set. That gives 64 different algorithms, only one of which is
Glowworm.

We found that any algorithm would work, as long as it
included the shift by 32, and as long as it included at least
two different shifts. In those cases, it was indistinguishable
from random. In the other cases, it was bad, and appeared to
get worse for fewer shifts and for smaller shifts. So it seems
that somewhere between 2 and 6 shifts are needed (inclusive),
and that large shifts are better. Glowworm is therefore defined
to be the variant with 4 shifts (midway between 2 and 6), and
where the 4 shifts are the 4 largest. In other words, Glowworm
was defined to be 4,8,16,32, as shown above, as a result of
running the attacker on all 64 variants.

VI. HARDWARE IMPLEMENTATION OF GLOWWORM

The simplicity of the structure of the Glowworm hash
makes it ideally suited to efficient implementation in a Field
Programmable Gate Array (FPGA) or Application Specific
Integrated Circuit (ASIC). The resource utilization in an
inexpensive FPGA is quite small, and the performance exceeds
that of any external memory that would be used to store the
BBC packet, thus the hasher will not limit the performance of
a hardware BBC decoder.

Glowworm has been implemented in VHDL and synthe-
sized for the Xilinx Spartan 3 and Spartan 6 family FPGAs.
The implementation follows directly from the Glowworm
block diagram, with only a few details being of particular
note.

The implementation consists of a control state machine, a
32 word by 64 bit dual-port RAM for the B shift register, a
32 word by 64 bit ROM for the initialization values for the B
shift register, three registers to point to entries in the B array,
and combinatorial logic consisting primarily of multiplexers,
XOR gates, and OR gates. While the source code uses the
multiple instances of shift left and shift right operators, these
are all shifts by a fixed bit count, and thus synthesize to direct
wiring rather than multiplexers or barrel shifters.

Rather than use the 4096-step initialization process defined
in the Glowworm specification, the ROM is used to load the
B shift register with the results of the initialization process in

only 32 clock cycles. The same technique is expected to be
used in efficient software implementations. With some added
complexity, the initialization of the hardware implementation
could be reduced to a single clock cycle.

The AddBit and DelBit operations each take a single
clock cycle, and function identically with the exception of
the addresses used to index B. For efficiency, three separate
registers are used to index B, containing the values p-1, p, and
p+1, with two multiplexers to select which of these counters
are used for each of the two address ports of the dual-port
RAM.

In order to avoid the incrementer and decrementer for the
p registers being in the critical path, they are used in parallel
to compute p-2 and p+2, with multiplexers to select the new
values to be stored into the p-1, p, and p+1 registers.

VII. CONCLUSION

We have presented a new hash function, the Glowworm
hash. It is simpler and more portable than the Inchworm that
was published in MILCOM-2010, yet it is more secure. We
showed both theoretical and empirical breaks for Inchworm
that give the attacker a real (though very small) advantage
over an ideal hash. Glowworm was designed to eliminate those
flaws.

We have mathematically proved that Glowworm is not
susceptible to the flaws we showed in Inchworm. If two
machines are hashing two strings in parallel, then the first
bit where they differ will trigger an avalanche of changes,
that ensure they will have different fast states for at least 32
iterations, at which point, every word of one machine’s buffer
will differ from the corresponding word in the other buffer.
Then their states will continue to differ for at least another
32 iterations. This eliminates many types of collision attacks,
including the one that succeeded against Inchworm.

In addition to these theoretical results, we showed empirical
results with attack software designed to search for good attack
packets. It tested Glowworm, SHA-1, MD5, and all 5 of
the SHA-3 candidates, as well as 63 variants of Glowworm.
Flaws were found in Inchworm and the weaker variants
of Glowworm, but no flaws were found in Inchworm-S or
Glowworm.

Finally, we implemented Glowworm in VHDL for execu-
tion on an FPGA. We found in simulation that it can hash
each string in a single clock cycle. Therefore, Glowworm is
extremely efficient in both software and hardware. And the
bottleneck in speeding up BBC decoding is no longer in the
speed of the hash, it is simply in the time to access memory
to see whether a mark is present at a given location or not.
There is therefore no need to work on speeding up Glowworm,
because it now takes such a tiny fraction of the entire run time.

This work used only simple, greedy attack algorithms. It
would be good to look for more sophisticated ways of finding
attack packets. This would be a good area for future research.

REFERENCES

[1] L. C. Baird III, M. C. Carlisle, and W. L. Bahn, “Unkeyed jam
resistance 300 times faster: The inchworm hash,” in MILCOM 2010 -

Military Communications Conference, Oct 2010. [Online]. Available:
http://leemon.com/papers/2010bcb.pdf

[2] L. C. Baird III, W. L. Bahn, and M. D. Collins, “Jam-resistant commu-
nication without shared secrets through the use of concurrent codes,” U.
S. Air Force Academy, Tech. Rep. USAFA-TR-2007-01, Feb 14 2007.

[3] W. L. Bahn, L. C. Baird III, and M. D. Collins, “The use of concurrent
codes in computer programming and digital signal processing educa-
tion,” Journal of Computing Sciences in College, vol. 23, no. 1, pp.
174–180, Oct 2007, also in the Proceedings of the 16th Annual Rocky
Mountain Conference of the Consortium for Computing Sciences in
Colleges (RMCCSC), Orem Utah.

[4] W. L. Bahn and L. C. Baird III, “Impediments to systems thinking:
Communities separated by a common language,” in Proceedings of the
4th International Conference on Cybernetics and Information (CITSA),
July 12-15 2007, pp. 122–127.

[5] L. C. Baird III, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. Butler,
“Keyless jam resistance,” in Proceedings of the 8th Annual IEEE SMC
Information Assurance Workshop (IAW), June 20-22 2007, pp. 143–150.

[6] L. C. Baird III and D. H. Kraft, “A new approach for boolean query
processing in text information retreival,” in Proceedings of the Inter-
national Fuzzy Systems Association (IFSA) 2007 World Congress, June
18-21 2007.

[7] D. Schweitzer, L. C. Baird III, and W. Bahn, “Visually understanding
jam resistant communication,” in Proceedings of the 3rd International
Workshop on Visualization for Computer Security, Oct 29 2007, pp.
175–186.

[8] W. L. Bahn and L. C. Baird III, “Extending critical mark densities in
concurrent codecs through the use of interstitial checksum bits,” U. S.
Air Force Academy, Academy Center for Cyberspace Research, Tech.
Rep. USAFA-TR-2008-ACCR-02, Dec 8 2008.

[9] ——, “Hardware-centric implementation considerations for bbc-based
concurrent codecs,” U. S. Air Force Academy, Academy Center for
Cyberspace Research, Tech. Rep. USAFA-TR-2008-ACCR-03, Dec 8
2008.

[10] W. L. Bahn, L. C. Baird III, and M. D. Collins, “Jam resistant communi-
cations without shared secrets,” in Proceedings of the 3rd International
Conference on Information Warfare and Security (ICIW08), April 24-25
2008.

[11] W. L. Bahn, L. C. Baird III, and D. Collins, Michael, “Oscillator mis-
match and jitter compensation in concurrent codecs,” in IEEE Military
Communication Conference (MILCOM08), Nov 17-19 2008.

[12] R. Thurimella and L. C. Baird III, Cryptography for Cyber Security and
Defense: Information Encryption and Cyphering. IGI Global, 2009,
chapter title: ”Network Security”.

[13] L. C. Baird III and W. L. Bahn, “Parallel bbc decoding with little
interprocess communication,” U. S. Air Force Academy, Academy
Center for Cyberspace Research, Tech. Rep. USAFA-TR-2009-ACCR-
01, Nov 2009.

[14] ——, “An efficient correlator for implementations of bbc jam resis-
tance,” U. S. Air Force Academy, Academy Center for Cyberspace
Research, Tech. Rep. USAFA-TR-2009-ACCR-02, Nov 2009.

[15] ——, “An o(log n) running median or running statistic method, for use
with bbc jam resistance,” U. S. Air Force Academy, Academy Center
for Cyberspace Research, Tech. Rep. USAFA-TR-2009-ACCR-03, Nov
2009.

[16] S. Hamilton, “Secure jam resistant key transfer,” Masters thesis, Auburn
Univeristy, Tech. Rep., May 2008.

[17] M. Kuhr, “An adaptive jam-resistant cross-layer protocol for mobile ad-
hoc networks in noisy environments,” PhD thesis, Auburn Univeristy,
Tech. Rep., May 2009.

[18] D. Sanders, “A single-hop medium access control layer for noisy
channels,” PhD thesis, Auburn Univeristy, Tech. Rep., August 2009.

[19] S. S. Hamilton and J. A. Hamilton Jr., “A secure jam resistant key
transfer : Using the dod cac card to secure a radio link by employing
the bbc jam resistant algorithm,” in IEEE Military Communication
Conference (MILCOM08), Nov 17-19 2008.

[20] FIPS PUB 180-1 Secure Hash Standard. National Institute of Standards
and Tchnology, 1995.

[21] L. C. Baird III and W. L. Bahn, “Security analysis of bbc coding,” U. S.
Air Force Academy, Academy Center for Cyberspace Research, Tech.
Rep. USAFA-TR-2008-ACCR-01, Dec 8 2008.

