Some new Constructions of Optimal Superimposed Designs.

Sergey Yekhanin

* Moscow State University, Faculty of Mechanics and Mathematics Department of Probability Theory, Moscow, 119899, Russia Email: vekhanin@cityline.ru

Abstract– D'yachkov-Rykov in [1-2] presented optimal constructions of superimposed codes and designs. Their constructions are based on the q-ary codes, that were studied by Kautz-Singleton. This paper improves D'yachkov-Rykov's results concerning optimal superimposed designs.

1. Notations and Formulation of the Results.

Let $1 \leq s \leq t$, $1 \leq k \leq t$, $N \geq 1$ be integers and $X = || x_i(u) ||$, i = 1, 2, ..., N, u = 1, 2, ..., t be a binary $(N \times t)$ matrix (code) with columns (codewords) $\mathbf{x}(1), \mathbf{x}(2), ..., \mathbf{x}(t)$ and rows $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$, where $\mathbf{x}(u) = (x_1(u), x_2(u), ..., x_N(u))$ and $x_i = (x_i(1), ..., x_i(t))$. Let $k = \max_i \sum_{u=1}^t x_i(u)$ be the maximal weight of rows.

The code X is called a *superimposed* (s, t)-design if all the Boolean sums composed of not more than s columns are distinct.

Definition 1. An $(N \times t)$ -matrix X is called a superimposed (s, t, k)-design of length N, size t, strength s and constraint k if code X is a superimposed (s, t)-design whose maximal row weight is equal to k.

By N(s, t, k) we denote the minimal possible length of the superimposed (s, t, k)-design. In [1] the following fact was proved:

For any $s \ge 3$, $k \ge s + 1$, $q = k^{s-1}$ there is an optimal superimposed (s,kq,k)-design of length sq. The following theorem improves this result in case s = 3.

Theorem: Let $4 \le k$, $q \ge k^2$ be integers. Then N(s, kq, k) = 3q.

Proof of the Theorem.

To prove the theorem we need the following notations and definitions.

Let $q \ge k \ge 4$, t = kq be integers,

 $A_q = [q] = \{1, \ldots, q\}$ be a q-nary alphabet,

Code $B = || b_j(u) || j = 1, 2, 3, u = 1, ... t$ be a q-nary $(3 \times t)$ -matrix with elements $b_j(u)$ from A_q ,

 $\mathbf{b}(u) = (b_1(u), b_2(u), b_3(u)), u = 1, \dots, t, \text{ be columns (codewords).}$

Definition 2. Code B is called an (q, k, 3)-homogeneous code if for any j = 1, 2, 3 and any a from A_q , the number of a-entries in the j - th row \mathbf{b}_j is equal to k.

We call a homogeneous (q, k, 3)-code B a 2-*disjunct* code if the Hamming distance of code $H(B) \ge 2$.

 $[\]ast$ This work was supported by the Russian Fundamental Research Foundation, Project 98-01-00241

Let $\mathbf{e} = (e_1, e_2, e_3)$ be an arbitrary 3-subset of set $[t] = \{1, \ldots, t\}$. For a given code B and any j = 1, 2, 3, denote by $A_j(\mathbf{e}, B)$ -the set of all pairwise distinct elements of the sequence $b_j(e_1), b_j(e_2), b_j(e_3)$.

Definition 3. Let $n \leq 3$ be arbitrary integer. 2-disjunct code *B* is called an 3-separable code if for an arbitrary *n*-subset $\mathbf{e} = (e_1, \ldots, e_n)$ of set [t], there exists the possibility to identify this subset on the basis of sets:

$$A_1(\mathbf{e}, B), \ A_2(\mathbf{e}, B), \ A_3(\mathbf{e}, B)$$

Definition 4. Homogeneous code *B* is called a 3-*hash* if for an arbitrary 3-subset $\mathbf{e} = (e_1, e_2, e_3)$, of the set [t], there exists a coordinate j = 1, 2, 3, such that all the elements $b_j(e_1), b_j(e_2), b_j(e_3)$ are all different.

Let a symbol b from [q] of (q, k, 3) separable code be replaced by the binary q-sequence in which all the elements are 0's, except the element with the number b. As a result we obtain a binary code X_B which is a superimposed design.

Consider an arbitrary (q, k, 3) 2-disjunct code *B*. We introduce a characteristic $(q \times q)$ matrix *C* with the elements from alphabet $A_{q+1} = \{*, [q]\} = \{*, 1, 2, \dots, q\}$. Where

$$C_{ij} = \begin{cases} a, & \text{if in } X \text{ there is a codeword } (i, j, a); \\ *, & \text{otherwise.} \end{cases}$$

We say that matrix B is identified by the characteristic matrix C which will be called C(q, k)-matrix.

Matrix C is an C(q, k)-matrix if and only if C has the following properties:

1. For any x from [q] there are exactly k pairs (i, j) such that $C_{ij} = x$. Hence, there are q(q-k) * in C(q,k).

2. For any p, i, j from [q] neither $C_{pi} = C_{pj} \neq *$ nor $C_{ip} = C_{jp} \neq *$ where $i \neq j$. Hence all the numbers in one column or row are distinct.

3. For any column (row) of C the number of *-entries s equal to k.

Denote by $C_{HS}(q,k)$ -matrices of hash&separable code.

It is possible to prove that matrix C is $C_{HS}(q, k)$ if and only if C has the properties 1-3 and the following 2 properties.

4. For any i, j, k, p from [q] such that $C_{ij} = C_{kp} = a$ the $C_{ip} = C_{kj} = *$. Hence there are no submatrixes of the form of:

$$\begin{pmatrix} a & b \\ & a \end{pmatrix}$$

5. If $C_{iv} = C_{jp} = a$ and $C_{kv} = C_{jr} = b$ then $C_{ir} \neq C_{kp}$ Hence, in $C_{HS}(q, k)$ there are no submatrixes of the form of:

$$\begin{pmatrix} * & a & c \\ a & * & b \\ c & b & * \end{pmatrix}$$

Lemma 1: Let $k \ge 4, c$ be integers. In case $c \ge k$ than there exists an $C_{HS}(ck, k)$. **Proof:** By Q we denote a $((c + k) \times k)$ -matrix whose elements are defined as follows:

$$Q_{ij} = \begin{cases} (i-1)+j, & \text{if } 1 \le i \le c; \\ (i-c)+j, & \text{if } c+1 \le i \le c+k \end{cases}$$

Let p be some integer $1 \le p \le c$. By B_k^p we denote a $(k \times k)$ -matrix whose i^{th} row is the $(i+p)^{th}$ row of matrix Q.We construct

$$C(ck,k) = \begin{pmatrix} B_k^1 & & & \\ & B_k^2 & & \\ & & \ddots & \\ & & & & B_k^c \end{pmatrix}$$

One can easily check that this matrix has all the properies 1 - 4.

Lemma 2: Let $k \ge 4, q$ be integers. In case $q \ge k^2$ than there exists an $C_{HS}(q, k)$.

Proof: As $q \ge k^2 q = ck + r$ where $r \le k$ and $c \ge r$. Here we explain an algorithm of constructing $C_{HS}(k,q)$.

Algorithm:

Step 1: According to the method explained in Lemma 2 we can simply construct a $C_{HS}(ck,k)$ where on the diagonal there are c squares- $(k \times k)$ We denote the first k of them as A_1, A_2, \ldots, A_k .

Step 2: (By this step we extend our alphabet with new numbers ck + 1, ck + 2, ..., ck + r). In every A_i r numbers $\{(i-1)k + 1, (i-1)k + 2, ..., (i-1)k + r\}$ (r first numbers) are changed to the numbers ck + 1, ck + 2, ..., ck + r.

Step 3: (By this step we change the size of the square).

We construct new squares $D_i A_i$ $(1 \le i \le r)$. The size of the D_i will be q+1. On the diagonal positions we place *. On the sub-diagonal line (positions $C_{i(i-1)}$ where $2 \le i \le k+1$) the elements $i, k+i, \ldots, k(k-1)+i$ will be placed in some order. If in square A_i there also are elements from $\{i, k+i, \ldots, k(k-1)+i\}$ they will be placed at the positions symmetric to their equal on the sub-diagonal line. All the other elements from A_i will be transferred to D_i in arbitrary fixed order. There will be enough place as changing the size of the square we've added 2k + 1 new positions to it. And after that we've filled k positions with the numbers $i, k+i, \ldots, k(k-1)+i$ and k+1 with *.

Step 4: Changing the matrices A_i to D_i on the diagonal of $C_{(ck, k)}$ we get an C(q, k). One can easily check that all the properies 1 - 4 are fulfilled. So Lemma 2 is proved. To illustrate the algorithm the following example is given.

Example: Let k = 3, $q = 11 \Rightarrow c = 3$, r = 2. Instead of 10 we write a, and instead of 11 we write b.

Step 1:

Step 2:

$$A_{1} \Rightarrow \begin{pmatrix} a & b & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad A_{2} \Rightarrow \begin{pmatrix} a & b & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix}, \quad A_{3} \Rightarrow \begin{pmatrix} a & b & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

Step 3:

Step 4:

From [1] it is known that $N(3, kq, k) \ge 3q$ where $q \ge k \ge 4$. Lemma 2 proves that for the case of $q \ge k^2$ there is a method of constructing designs of length 3q. Hence, in this case N(3, kq, k) = 3q and theorem is proved.

3. References

- A.G. D'yachkov, A.J. Macula, V.V. Rykov "On Optimal Parameters of a class of Superimposed Codes and Designs," *Proc. Int. Symp. on Information Theory*, Boston, USA, August 1998.
- [2] A.G. D'yachkov, V.V. Rykov "Some Constructions of Optimal Superimposed Codes," Conference on "Computer Science and Information Technologies", Yerevan, Armenia, September 1997, pp. 242-245.