Some new Constructions of Optimal Superimposed Designs.

Sergey Yekhanin

* Moscow State University, Faculty of Mechanics and Mathematics

Department of Probability Theory, Moscow, 119899, Russia
Email: yekhanin@cityline.ru

Abstract- D'yachkov-Rykov in [1-2] presented optimal constructions of superimposed codes and designs. Their constructions are based on the q-ary codes, that were studied by Kautz-Singleton. This paper improves D'yachkov-Rykov's results concerning optimal superimposed designs.

1. Notations and Formulation of the Results.

Let $1 \leq s \leq t, 1 \leq k \leq t, N \geq 1$ be integers and $X=\left\|x_{i}(u)\right\|, i=1,2, \ldots, N, u=$ $1,2, \ldots, t$ be a binary $(N \times t)$ matrix (code) with columns (codewords) $\mathbf{x}(1), \mathbf{x}(2), \ldots, \mathbf{x}(t)$ and rows $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, where $\mathbf{x}(u)=\left(x_{1}(u), x_{2}(u), \ldots, x_{N}(u)\right)$ and $x_{i}=\left(x_{i}(1), \ldots, x_{i}(t)\right)$. Let $k=\max _{i} \sum_{u=1}^{t} x_{i}(u)$ be the maximal weight of rows.

The code X is called a superimposed (s, t)-design if all the Boolean sums composed of not more than s columns are distinct.

Definition 1. An $(N \times t)$-matrix X is called a superimposed (s, t, k)-design of length N, size t, strength s and constraint k if code X is a superimposed (s, t)-design whose maximal row weight is equal to k.

By $N(s, t, k)$ we denote the minimal possible length of the superimposed (s, t, k)-design.
In [1] the following fact was proved:
For any $s \geq 3, k \geq s+1, q=k^{s-1}$ there is an optimal superimposed ($\mathrm{s}, \mathrm{kq}, \mathrm{k}$)-design of length $s q$. The following theorem improves this result in case $s=3$.

Theorem: Let $4 \leq k, q \geq k^{2}$ be integers. Then $N(s, k q, k)=3 q$.

Proof of the Theorem.

To prove the theorem we need the following notations and definitions.
Let $q \geq k \geq 4, t=k q$ be integers,
$A_{q}=[q]=\{1, \ldots, q\}$ be a q-nary alphabet,
Code $B=\left\|b_{j}(u)\right\| j=1,2,3, u=1, \ldots t$ be a q-nary $(3 \times t)$-matrix with elements $b_{j}(u)$ from A_{q},
$\mathbf{b}(u)=\left(b_{1}(u), b_{2}(u), b_{3}(u)\right), u=1, \ldots t$, be columns (codewords).
Definition 2. Code B is called an ($q, k, 3$)-homogeneous code if for any $j=1,2,3$ and any a from A_{q}, the number of a-entries in the $j-t h$ row \mathbf{b}_{j} is equal to k.

We call a homogeneous ($q, k, 3$)-code B a 2 -disjunct code if the Hamming distance of code $H(B) \geq 2$.

[^0]Let $\mathbf{e}=\left(e_{1}, e_{2}, e_{3}\right)$ be an arbitrary 3 -subset of set $[t]=\{1, \ldots t\}$. For a given code B and any $j=1,2,3$, denote by $A_{j}(\mathbf{e}, B)$-the set of all pairwise distinct elements of the sequence $b_{j}\left(e_{1}\right), b_{j}\left(e_{2}\right), b_{j}\left(e_{3}\right)$.

Definition 3. Let $n \leq 3$ be arbitrary integer. 2-disjunct code B is called an 3-separable code if for an arbitrary n-subset $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ of set $[t]$, there exists the possibility to identify this subset on the basis of sets:

$$
A_{1}(\mathbf{e}, B), A_{2}(\mathbf{e}, B), A_{3}(\mathbf{e}, B)
$$

Definition 4. Homogeneous code B is called a 3 -hash if for an arbitrary 3 -subset $\mathbf{e}=\left(e_{1}, e_{2}, e_{3}\right)$, of the set $[t]$, there exists a coordinate $j=1,2,3$, such that all the elements $b_{j}\left(e_{1}\right), b_{j}\left(e_{2}\right), b_{j}\left(e_{3}\right)$ are all different.

Let a symbol b from $[q]$ of $(q, k, 3)$ separable code be replaced by the binary q-sequence in which all the elements are 0's, except the element with the number b. As a result we obtain a binary code X_{B} which is a superimposed design.

Consider an arbitrary ($q, k, 3$) 2-disjunct code B. We introduce a characteristic $(q \times q)$ matrix C with the elements from alphabet $A_{q+1}=\{*,[q]\}=\{*, 1,2, \ldots q\}$. Where

$$
C_{i j}= \begin{cases}\mathrm{a}, & \text { if in } X \text { there is a codeword }(i, j, a) ; \\ { }^{*}, & \text { otherwise }\end{cases}
$$

We say that matrix B is identified by the characteristic matrix C which will be called $C(q, k)$-matrix.

Matrix C is an $C(q, k)$-matrix if and only if C has the following properties:

1. For any x from $[q]$ there are exactly k pairs (i, j) such that $C_{i j}=x$. Hence, there are $q(q-k) *$ in $C(q, k)$.
2. For any p, i, j from [q] neither $C_{p i}=C_{p j} \neq *$ nor $C_{i p}=C_{j p} \neq *$ where $i \neq j$. Hence all the numbers in one column or row are distinct.
3. For any column (row) of C the number of $*$-entries s equal to k.

Denote by $C_{H S}(q, k)$-matrices of hash\&separable code.
It is possible to prove that matrix C is $C_{H S}(q, k)$ if and only if C has the properties $1-3$ and the following 2 properties.
4. For any i, j, k, p from $[q]$ such that $C_{i j}=C_{k p}=a$ the $C_{i p}=C_{k j}=*$. Hence there are no submatrixes of the form of:

$$
\left(\begin{array}{ll}
a & b \\
& a
\end{array}\right)
$$

5. If $C_{i v}=C_{j p}=a$ and $C_{k v}=C_{j r}=b$ then $C_{i r} \neq C_{k p}$ Hence, in $C_{H S}(q, k)$ there are no submatrixes of the form of:

$$
\left(\begin{array}{lll}
* & a & c \\
a & * & b \\
c & b & *
\end{array}\right)
$$

Lemma 1: Let $k \geq 4, c$ be integers. In case $c \geq k$ than there exists an $C_{H S}(c k, k)$.
Proof: By Q we denote a $((c+k) \times k)$-matrix whose elements are defined as follows:

$$
Q_{i j}= \begin{cases}(\mathrm{i}-1)+\mathrm{j}, & \text { if } 1 \leq i \leq c ; \\ (\mathrm{i}-\mathrm{c})+\mathrm{j}, & \text { if } c+1 \leq i \leq c+k .\end{cases}
$$

Let p be some integer $1 \leq p \leq c$. By B_{k}^{p} we denote a ($k \times k$)-matrix whose $i^{\text {th }}$ row is the $(i+p)^{t h}$ row of matrix Q. We construct

$$
C(c k, k)=\left(\begin{array}{cccc}
B_{k}^{1} & & & \\
& B_{k}^{2} & & \\
& & \ddots & \\
& & & B_{k}^{c}
\end{array}\right)
$$

One can easily check that this matrix has all the properies $1-4$.
Lemma 2: Let $k \geq 4, q$ be integers. In case $q \geq k^{2}$ than there exists an $C_{H S}(q, k)$.
Proof: As $q \geq k^{2} q=c k+r$ where $r \leq k$ and $c \geq r$. Here we explain an algorithm of constructing $C_{H S}(k, q)$.

Algorithm:

Step 1: According to the method explained in Lemma 2 we can simply construct a $C_{H S}(c k, k)$ where on the diagonal there are c squares- $(k \times k)$ We denote the first k of them as $A_{1}, A_{2}, \ldots, A_{k}$.
Step 2: (By this step we extend our alphabet with new numbers $c k+1, c k+2, \ldots, c k+r$). In every $A_{i} r$ numbers $\{(i-1) k+1,(i-1) k+2, \ldots,(i-1) k+r\}(r$ first numbers) are changed to the numbers $c k+1, c k+2, \ldots, c k+r$.
Step 3: (By this step we change the size of the square).
We construct new squares $D_{i} A_{i}(1 \leq i \leq r)$. The size of the D_{i} will be $q+1$. On the diagonal positions we place *. On the sub-diagonal line (positions $C_{i(i-1)}$ where $2 \leq i \leq k+1$) the elements $i, k+i, \ldots, k(k-1)+i$ will be placed in some order. If in square A_{i} there also are elements from $\{i, k+i, \ldots, k(k-1)+i\}$ they will be placed at the positions symmetric to their equal on the sub-diagonal line. All the other elements from A_{i} will be transfered to D_{i} in arbitrary fixed order. There will be enough place as changing the size of the square we've added $2 k+1$ new positions to it. And after that we've filled k positions with the numbers $i, k+i, \ldots, k(k-1)+i$ and $k+1$ with $*$.
Step 4: Changing the matrices A_{i} to D_{i} on the diagonal of $\left.C_{(} c k, k\right)$ we get an $C(q, k)$.
One can easily check that all the properies $1-4$ are fulfilled. So Lemma 2 is proved.
To illustrate the algorithm the following example is given.
Example: Let $k=3, q=11 \Rightarrow c=3, r=2$. Instead of 10 we write a, and instead of 11 we write b.

Step 1:

$$
C(9,3)=\left(\begin{array}{lllllllll}
1 & 2 & 3 & * & * & * & * & * & * \\
4 & 5 & 6 & * & * & * & * & * & * \\
7 & 8 & 9 & * & * & * & * & * & * \\
* & * & * & 4 & 5 & 6 & * & * & * \\
* & * & * & 7 & 8 & 9 & * & * & * \\
* & * & * & 1 & 2 & 3 & * & * & * \\
* & * & * & * & * & * & 7 & 8 & 9 \\
* & * & * & * & * & * & 1 & 2 & 3 \\
* & * & * & * & * & * & 4 & 5 & 6
\end{array}\right) .
$$

Step 2:

$$
A_{1} \Rightarrow\left(\begin{array}{ccc}
a & b & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right), \quad A_{2} \Rightarrow\left(\begin{array}{ccc}
a & b & 6 \\
7 & 8 & 9 \\
1 & 2 & 3
\end{array}\right), \quad A_{3} \Rightarrow\left(\begin{array}{ccc}
a & b & 9 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) .
$$

Step 3:

$$
D_{1}=\left(\begin{array}{llll}
* & a & b & 3 \\
1 & * & 4 & 6 \\
5 & 4 & * & 7 \\
9 & 8 & 7 & *
\end{array}\right), \quad D_{2}=\left(\begin{array}{cccc}
* & 2 & b & 8 \\
2 & * & a & 3 \\
7 & 5 & * & 9 \\
6 & 1 & 9 & *
\end{array}\right)
$$

Step 4:

$$
C(11,3)=\left(\begin{array}{lllllllllll}
* & a & b & 3 & * & * & * & * & * & * & * \\
1 & * & 4 & 6 & * & * & * & * & * & * & * \\
5 & 4 & * & 7 & * & * & * & * & * & * & * \\
9 & 8 & 7 & * & * & * & * & * & * & * & * \\
* & * & * & * & * & 2 & b & 8 & * & * & * \\
* & * & * & * & 2 & * & a & 3 & * & * & * \\
* & * & * & * & 7 & 5 & * & 9 & * & * & * \\
* & * & * & * & 6 & 1 & 9 & * & * & * & * \\
* & * & * & * & * & * & * & * & a & b & 9 \\
* & * & * & * & * & * & * & * & 1 & 2 & 3 \\
* & * & * & * & * & * & * & * & 4 & 5 & 6
\end{array}\right) .
$$

From [1] it is known that $N(3, k q, k) \geq 3 q$ where $q \geq k \geq 4$. Lemma 2 proves that for the case of $q \geq k^{2}$ there is a method of constructing designs of length $3 q$. Hence, in this case $N(3, k q, k)=3 q$ and theorem is proved.

3. References

[1] A.G. D'yachkov, A.J. Macula, V.V. Rykov "On Optimal Parameters of a class of Superimposed Codes and Designs," Proc. Int. Symp. on Information Theory, Boston, USA, August 1998.
[2] A.G. D'yachkov, V.V. Rykov "Some Constructions of Optimal Superimposed Codes," Conference on "Computer Science and Information Technologies", Yerevan, Armenia, September 1997, pp. 242-245.

[^0]: * This work was supported by the Russian Fundamental Research Foundation, Project 98-01-00241

