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Abstract — Code is fix-free if no codeword is a pre-
fix or a suffix of any other. In this paper we improve
the best-known sufficient conditions on existence of
fix-free codes by a new explicit construction. We also
discuss the well-known Kraft-type conjecture on the
existence of fix-free codes basing on the results ob-
tained by computer checking.

I. Introduction

Let C(k1, k2, . . . , kn) denote a binary variable-length code
C with k1 codewords of length 1, k2 codewords of length 2,
. . . and kn codewords of length n.

Let k1, . . . , kn be arbitrary positive integers. To simlify

further presentation we denote
n∑
i=1

ki
2i

by χ(k1, . . . , kn).

Recall that a code is called prefix-free {resp. suffix-free},
if no codeword is beginning {resp. ending} of another one.
Code C, which is simultaneously prefix-free and suffix-free is
called fix-free.

Our goal is to develop sufficient conditions on the existence
of fix-free codes. The well-known Kraft-type conjecture [1] by
R. Ahlswede is that for any values of parameters k1, k2, . . . , kn,
such that

χ(k1, k2, . . . , kn) ≤ 3

4
, (1)

there exists a fix-free code C(k1, k2, . . . , kn)
The next section gives a short overview of particular cases

in which the conjecture is proved.
The following lemma [1] shows that, if true, bound (1) is

the best possible.
Lemma 1: For any ε > 0 there exist parameters

k1, k2, . . . , kn such that χ(k1, k2, . . . , kn) ≤ 3
4

+ ε and there
exists no fix-free code C(k1, k2, . . . , kn).

II. Statement of Results

In this section we formulate the known sufficient conditions
on existence of fix-free codes. Proofs of the next two theorems
can be found in [1].

Theorem 1: If χ(k1, . . . , kn) ≤ 1
2

then there exists a fix-
free C(k1, . . . , kn).

Theorem 2: Suppose that if i < j and ki > 0 and kj > 0,
then i < 2j. Then χ(k1, . . . , kn) ≤ 3

4
implies the existence of

a fix-free code C(k1, . . . , kn).
The main result presented in current paper is formulated

by the next theorem. The sketch of proof is given in section
three.
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Theorem 3: Let k1, k2, . . . , kn be arbitrary nonnegative
integers. Suppose that the following statements are true:

χ(k1, . . . , kn) ≤ 3

4
,

∃p : k1 = . . . = kp−1 = 0, and
kp
2p

+
kp+1

2p+1
≥ 1

2
.

This implies the existence of fix-free code C(k1, k2, . . . , kn).
Corollary 1: If χ(k1, . . . , kn) ≤ 3

4
and k1 = 1 then there

exists a fix-free code C(k1, k2, . . . , kn).
Note, that all the theorems formulated above are particular

cases of conjecture (1). We have applied computer program-
ming to check the conjecture for the small values of n. Thus
the following theorem was obtained.

Theorem 4: Let k1, . . . , kn be arbitrary nonnegative inte-
gers such that χ(k1, . . . , kn) ≤ 3

4
and n ≤ 8 then there exists

a fix-free code C(k1, . . . , kn).
One more sufficient condition of existence of fix-free codes

is given in [2].

III. Sketch of the proof

We say that set D ⊆ {0, 1}n is left regular {right regular} if
all (n − 1)-prefixes {suffixes} of words from D are pairwisely
distinct.

Let C(k1, . . . , kn) be a fix-free code. We say that a vector
w ∈ {0, 1}n is prefix-free {suffix-free} over C if no codeword
c ∈ C is a prefix {suffix} of w. Futher by M(C) {M̂(C)} we
denote the set all binary vectors of length n that are prefix-free
{suffix-free} over C.

Definition: We say that fix-free code C(k1, . . . , kn) is a
π-system if M(C) is right regular, M̂(C) is left regular and
χ(k1, . . . , kn) = 1

2
.

We split the proof into two sections. Firstly we study the
properties and develop explicit constructions of π-systems.
The main result of this section is formulated by

Lemma 2: If k1 = . . . = kn−2 = 0,
kn−1
2n−1 + kn

2n
= 1

2
, then

there exists a π-system C(k1, k2, . . . , kn).
SecondIy we study the relationship between π-systems

and fix-free codes and prove that an arbitrary π-system
C1(k1, . . . , kp) can be extended to fix-free code C2(k1, . . . , kp+
b, . . . , kn), where χ(k1, . . . , kp + b, . . . , kn) ≤ 3

4
.
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