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Abstract

Applying an important combinatorial result of K. Engel [2], we improve upper bounds
on the rate of superimposed (s, {) - codes obtained in [3, 4].

1 Definitions and Formulations of Results

We use the symbol £ to denote definitional equalities.

Let N>1,4{>1,s>1and £ > 1, where s + £ < ¢, be arbitrary integers. A family of ¢
binary codewords of length N is called a superimposed (s, f)-code [3, 4] of size t and length N if
for any two non-intersecting subsets of codewords S of size |S| = s and L, |£| = ¥, there exists
a coordinate k, k = 1,2,..., N, in which all codewords from set S have 0’s and all codewords
from set £ have 1’s.

Let N(t,4,s) = N(t,s,£) denote the minimal possible length of superimposed (s, ¢) - code of
size t. For fixed s and /4, the number

—  logyt

— T
E(t,5) = B(s,0) tllglo N(t, 4, s)

is called [3, 4

]
Let h(u) = —ulogyu — (1 — u)logy(1 —u), 0 < u < 1, be the binary entropy. To formulate
the upper bound on the rate R(s,£), s > £ > 1, we introduce the function [1]

a rate of superimposed (s, ¢) - code.

fs(v) 2 h(v/s) —vh(1/s), s=1,2,...,
of argument v, 0 < v < 1. The following three statements are true.

Theorem 1. 1. If s =1,2,..., then the rate R(s,1) < R(s,1), where

R(1,1) = R(1,1) =1, R(2,1) éorgagl fo(v) = 0.321928 (1)
and sequence R(s,1), s = 3,4,..., is defined recurrently as the unique solution of the equation
_ R(s,1
R(s,1) = f, (1 - R(S’)) . (2)
R(s—1,1)
2. The rate
R(2,2) < R(2,2) 2 R(2,1)/2 = 0.160964. (3)
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3. Ifs>€>2 ors>/{>3, then the rate R(s,¥) satisfies the inequality

T . yY
<R A i i Bls—mg f—a). 2 Y
B(s,f) < B(s,0) = min =~ min {R(s z, L —y) @ +y)m+y}7 (4)

where sequence R(s,1), s =1,2,..., and the number R(2,2) are defined by (1)-(3).

The first statement was proved in [1] (see, also [4]). The second statement was proved in [4].
The third statement is an evident consequence of the following result obtained by K. Engel [2].

Theorem 2. (Engel’s inequality [2].) If s > £ > 2, then for any z =0,1,...,s — 1 and any
y=20,1,...,£—1, the rate

R(s,6) < R(s—z,0—y)- Gty

()

In section 3, we briefly present the proof of Theorem 2 from paper [2]. The numerical values
of upper bound R(s,£), 1 < ¢ < s <4, are:

R(2,1) = .32193, R(3,1) =.19928, R(4,1) =.14046, R(2,2) = 16096,

R(3,2) =.08048, R(4,2) =.04769, R(3,3) =.04024, R(4,3)=.02012
and R(4,4) = .01006.

2  Asymptotics of R(s,/)

If s — oo and £ > 2 is fixed, then the optimal values of z and y in definition (4) of R(s,#) are
y=£4—1, z~ps, 0 <p<1, and

Ris) ~ i { B0 - p1)

R GV
(ps + /4 — 1)ps+£—1 } ’

Using the asymptotic (s — oo) form [1, 4] of upper bound R(s,1) ~ 2log s/s?, we get

_ Vmwu—m_@W&w—N*}Nw+w“l%s

R(s,6) ~ 0<pel s2(1 — p)? (ps + £ — 1)psti—1 2el-1 Sl ©

where e = 2.71828 is the base of natural logarithm and we took into account that

4
201 _1y4-1
g AL =plp = =D e

with the optimal value p = Z__—%. For ¢ > 2, upper bound (6) is better than the similar upper
bound

_ log s
Rowa(s,£) ~ (£+1)!- g

which was obtained in [4].



3 Proof of Engel’s inequality

Let 1 <4<t 1<s<t where 2 < s+ /<t be arbitrary integers, [t] = {1,2,...,t} and the
set By of size |B;| = 2! be the Boolean lattice constituted of all subsets of [t].
t—s
Introduce the set P = P(t,{,t —s) C By, |P| = |P(t,£,t —s)| = 3 (!), whose elements are
n=>¢
n-subsets of [t], where £ < n <t —s. Let Z C Y C [t] be arbitrary subsets of [¢]. Denote by
J = J(t,L,t — s) the set of all intervals I = I(Z,Y):

I=1ZY)2{X :XeP, ZCXCY}, where |Z =40 |Y|=t—s, [f]\Y]|=s.

Obviously, each interval I € .J is isomorphic to By_,_; and |I| = 2t757¢, In addition, any element
X € P is contained in (1}1)(,';1{})) intervals of J. Taking all X with |X| = ¢ (resp. all X with
|X| =t—s) we obtain

"”:<Z><t:f£>:<tjs><t;5>' "

A set T C P is called a point cover of J if for any interval I € J, the intersection T N[ # &.
The minimal size of point cover T is denoted by 7(t,¢,t — s).

Lemma 1. The minimal length of superimposed (s,£)-code N(t,€,s) = 7(t, £, t — s).

Proof of Lemma 1. Let C be a superimposed (s, £)- code of length N and size ¢. Fix an
order over codewords of C = {c¢y,c¢o,...,¢t}. Introduce the following correspondence between
coordinates of codewords ¢y, g, . . ., ¢; and subsets of [t]: a set Xy C [t] corresponding to a coordi-
nate k, k =1,2,..., N, contains the numbers i of codewords ¢; having 1’s in the k-th coordinate.
Without loss of generality, £ < |Xj| < ¢t — s. Consider the set T £ {X{,Xs,..., Xy} C P =
P(t,2,t — s). Take an arbitrary interval I = I(Z,Y) € J = J(t,£,t — s). By definition of the
superimposed (s, ) - code C, there exists a coordinate k& such that all codewords with numbers
in Z have 1’s in the k-th coordinate and all codewords with numbers in [¢] \ Y have 0’s in the
k-th coordinate, i.e., Z C X C Y. Hence, X; € [ and TN I # &. Therefore, T is a point
cover of J. Thus, we have proved that N > 7(¢,¢,t — s), i.e., N(t,£,8) > 7(¢t,¢,1 — s). To prove
N(t,4,s) < 7(t,£,t — s) one needs to check that superimposed (s,¥¢)-code can be constructed
from a point cover using the correspondence described above.

We introduce several additional definitions. A fractional matching of P = P(t,4,t — s) is a
function f=f([)>0, Ie€J=J(t¥lt—s) such that

VXeP: d <t

15X
A fractional point cover of J is a function ¢g=g¢(X) >0, X € P such that
VIieJ: > g(X) =1
Xel

The fractional matching number v*(t,£,t — s) and fractional covering number 7 (¢, £, — s) are
defined by

v (t, 4t — s) = max {Z f(I): f is a fractional matching of P} ,
IeJ



*(t,¢,t — s) = min { Z g(X) : ¢ is a fractional point cover of J} .
XeP

Lemma 2. We have v*(t,4,t — s) = 7*(t,4,t —s) = min (t)/(tfsfé).

(<m<t—s ‘M m—¢

Proof of Lemma 2. The first equality follows from the Duality Theorem of linear pro-
gramming. Suppose that the minimum in the right-hand side is attained at m = mg. To prove
the second equality, it is enough to find a fractional matching f and a fractional point cover g

such that ( . )
IeJ mo—~ XeP
We choose )
) & e for all I € J
( £ )(t—s—mo)
and
R 0, if | X| # myg;
9(X) = ﬁ if | X] = my.
mo—4L

The function f is a fractional matching since

CINCEEY) (6D
f(I) = — e = ”;0 ;’ios_ <1 for all X € P,
210 = Gy ey = (8 ey i}

and g is a fractional point cover since

(tfsff)
Y g(X) =m0t =1 forall T€
Xel (mo—()
The equality (8) can be verified by straightforward computation using equality (7).

(s+l)s+l
ssit

Proof of Lemma 3. Let /,s and u, 0 < u < 1, be fixed. If ¢ — co and m ~ ut, then

Lemma 3. For fized {,s and t — oo, the number 7*(t,{,t —s) ~

() tt—=1)---[t = (s +£—1)]

= ~ [uz-(l—u)s}il.

oD Tm=@=Dlm} {(E=m) — = D] —m)}

m—{

Using the definition of 7%(¢,£,t — s) in Lemma 2, we have

Y . ~1
(bt =) ~ {0@52(1 [ug'(l_u)s]} - {(sié;s“} ’

where the maximum is achieved at u = H—Ls'

Lemma 4. For anyz=0,1,...,s — 1 andy=0,1,...,4—1,
T(t, 0, — 8)
Tt—z—yl—yt—s—y)

> 7t y,t — ).

(8)



Proof of Lemma 4. Let T, |T| = 7(t,¢,t — s) be an optimal point cover of J(t,£¢,t — s).
Wehave 0 <y <{l<t—s<t—zand T C P(t,4,t —s) C P(t,y,t —z). For X € P(t,y,t —x),
we define the function

o [t —2—y,l—yt—s—y), fXeT,
9(x) = {07 otherwise.

It is enough to show that g is a fractional point cover of J(¢,y,t — x). Consider an arbitrary
interval I € J(t,y,t — ) which is isomorphic to the Boolean lattice B;_;_,. Moreover, the part
of I which lies between levels £ and ¢ — s is isomorphic to P(t —z —y, ¢ —y,t — s —y). Since the
considered set T' is a point cover of J(t,4,t — s) the intersection 7' N I must be a point cover of
the corresponding set of intervals J(t —x — y,£ — y,t — s — y). Thus,

D g(X) > TNl > 1.

Proof of Theorem 2. If ' 2 ¢ —z —y, then t —s —y = ¢ — (s — x). Using Lemma 1, we
have 7(t —z —y,{ —y,t —s—y) = N(t —z —y,f —y,s — z). Therefore, we can rewrite the
inequality from Lemma 4 in the form

N(tagas) > T*(@y,t*ff) 'N(tix 7ya‘€*y7$*$)‘
For s, £, x,y fixed and t — oo, the application of Lemma 3 yields

(z 4 y)* v

N(t l,s) >
rryY

Nt L —y,s —x)(1+0o(1)). 9)

If we multiply by log, ¢t the opposite inequality for reciprocals in (9) and pass to the limit, then
we obtain inequality (5).

Theorem 2 is proved.
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