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Abstract
Applying an important combinatorial result of K. Engel [2], we improve upper bounds

on the rate of superimposed (s; `) - codes obtained in [3, 4].

1 De�nitions and Formulations of Results
We use the symbol , to denote de�nitional equalities.

Let N ≥ 1, t ≥ 1, s ≥ 1 and ` ≥ 1, where s + ` ≤ t, be arbitrary integers. A family of t
binary codewords of length N is called a superimposed (s; `)-code [3, 4] of size t and length N if
for any two non-intersecting subsets of codewords S of size |S| = s and L, |L| = `, there exists
a coordinate k, k = 1; 2; : : : ; N , in which all codewords from set S have 0's and all codewords
from set L have 1's.

Let N(t; `; s) = N(t; s; `) denote the minimal possible length of superimposed (s; `) - code of
size t. For �xed s and `, the number

R(`; s) = R(s; `) , lim
t→∞

log2 t
N(t; `; s)

is called [3, 4] a rate of superimposed (s; `) - code.
Let h(u) , −u log2 u − (1 − u) log2(1 − u), 0 < u < 1, be the binary entropy. To formulate

the upper bound on the rate R(s; `), s ≥ ` ≥ 1, we introduce the function [1]

fs(v) , h(v=s)− vh(1=s); s = 1; 2; : : : ;

of argument v, 0 < v < 1. The following three statements are true.

Theorem 1. 1. If s = 1; 2; : : :, then the rate R(s; 1) ≤ R(s; 1), where

R(1; 1) = R(1; 1) = 1; R(2; 1) , max
0<v<1

f2(v) = 0:321928 (1)

and sequence R(s; 1), s = 3; 4; : : :, is de�ned recurrently as the unique solution of the equation

R(s; 1) = fs
(

1− R(s; 1)
R(s− 1; 1)

)
: (2)

2. The rate
R(2; 2) ≤ R(2; 2) , R(2; 1)=2 = 0:160964: (3)
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3. If s > ` ≥ 2 or s ≥ ` ≥ 3, then the rate R(s; `) satis�es the inequality

R(s; `) ≤ R(s; `) , min
x=0;1;:::;s−1

min
y=0;1;:::;`−1

{
R(s− x; `− y) · xx · yy

(x+ y)x+y

}
; (4)

where sequence R(s; 1), s = 1; 2; : : :, and the number R(2; 2) are de�ned by (1)-(3).

The �rst statement was proved in [1] (see, also [4]). The second statement was proved in [4].
The third statement is an evident consequence of the following result obtained by K. Engel [2].

Theorem 2. (Engel's inequality [2].) If s ≥ ` ≥ 2, then for any x = 0; 1; : : : ; s− 1 and any
y = 0; 1; : : : ; `− 1, the rate

R(s; `) ≤ R(s− x; `− y) · xx · yy
(x+ y)x+y : (5)

In section 3, we brie
y present the proof of Theorem 2 from paper [2]. The numerical values
of upper bound R(s; `), 1 ≤ ` ≤ s ≤ 4, are:

R(2; 1) = :32193; R(3; 1) = :19928; R(4; 1) = :14046; R(2; 2) = :16096;

R(3; 2) = :08048; R(4; 2) = :04769; R(3; 3) = :04024; R(4; 3) = :02012
and R(4; 4) = :01006.

2 Asymptotics of R(s; `)

If s → ∞ and ` ≥ 2 is �xed, then the optimal values of x and y in de�nition (4) of R(s; `) are
y = `− 1; x ∼ ps; 0 < p < 1; and

R(s; `) ∼ min
0<p<1

{
R(s(1− p); 1) · (ps)ps · (`− 1)`−1

(ps+ `− 1)ps+`−1

}
:

Using the asymptotic (s→∞) form [1, 4] of upper bound R(s; 1) ∼ 2 log s=s2, we get

R(s; `) ∼ min
0<p<1

{2 log[s(1− p)]
s2(1− p)2 · (ps)ps · (`− 1)`−1

(ps+ `− 1)ps+`−1

}
∼ (`+ 1)`+1

2e`−1 · log s
s`+1 ; (6)

where e = 2:71828 is the base of natural logarithm and we took into account that

max
0<p<1

{(1− p)2 p`−1} = (`− 1)`−1 4
(`+ 1)`+1

with the optimal value p = `−1
`+1 . For ` ≥ 2, upper bound (6) is better than the similar upper

bound
Rold(s; `) ∼ (`+ 1)! · log s

s`+1 ;

which was obtained in [4].
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3 Proof of Engel's inequality
Let 1 ≤ ` < t, 1 ≤ s ≤ t, where 2 ≤ s + ` ≤ t, be arbitrary integers, [t] , {1; 2; : : : ; t} and the
set Bt of size |Bt| = 2t be the Boolean lattice constituted of all subsets of [t].

Introduce the set P = P (t; `; t− s) ⊆ Bt, |P | = |P (t; `; t− s)| =
t−s∑
n=`

( t
n
)
, whose elements are

n-subsets of [t], where ` ≤ n ≤ t − s. Let Z ⊆ Y ⊆ [t] be arbitrary subsets of [t]. Denote by
J = J(t; `; t− s) the set of all intervals I = I(Z; Y ):

I = I(Z; Y ) , {X : X ∈ P; Z ⊆ X ⊆ Y }; where |Z| = `; |Y | = t− s; |[t] \ Y | = s:

Obviously, each interval I ∈ J is isomorphic to Bt−s−` and |I| = 2t−s−`. In addition, any element
X ∈ P is contained in

(|X|
`

)( t−|X|
t−s−|X|

)
intervals of J . Taking all X with |X| = ` (resp. all X with

|X| = t− s) we obtain

|J | =
(t
`

)( t− `
t− s− `

)
=

( t
t− s

)(t− s
`

)
: (7)

A set T ⊆ P is called a point cover of J if for any interval I ∈ J , the intersection T ∩ I 6= ∅.
The minimal size of point cover T is denoted by �(t; `; t− s).

Lemma 1. The minimal length of superimposed (s; `)-code N(t; `; s) = �(t; `; t− s).
Proof of Lemma 1. Let C be a superimposed (s; `)- code of length N and size t. Fix an

order over codewords of C = {c1; c2; : : : ; ct}. Introduce the following correspondence between
coordinates of codewords c1; c2; : : : ; ct and subsets of [t]: a set Xk ⊆ [t] corresponding to a coordi-
nate k, k = 1; 2; : : : ; N , contains the numbers i of codewords ci having 1's in the k-th coordinate.
Without loss of generality, ` ≤ |Xk| ≤ t − s. Consider the set T , {X1; X2; : : : ; XN} ⊆ P =
P (t; `; t − s). Take an arbitrary interval I = I(Z; Y ) ∈ J = J(t; `; t − s). By de�nition of the
superimposed (s; `) - code C, there exists a coordinate k such that all codewords with numbers
in Z have 1's in the k-th coordinate and all codewords with numbers in [t] \ Y have 0's in the
k-th coordinate, i.e., Z ⊆ Xk ⊆ Y . Hence, Xk ∈ I and T ∩ I 6= ∅. Therefore, T is a point
cover of J . Thus, we have proved that N ≥ �(t; `; t− s), i.e., N(t; `; s) ≥ �(t; `; t− s). To prove
N(t; `; s) ≤ �(t; `; t − s) one needs to check that superimposed (s; `)-code can be constructed
from a point cover using the correspondence described above.

We introduce several additional de�nitions. A fractional matching of P = P (t; `; t − s) is a
function f = f(I) ≥ 0, I ∈ J = J(t; `; t− s) such that

∀X ∈ P :
∑

I3X
f(I) ≤ 1:

A fractional point cover of J is a function g = g(X) ≥ 0, X ∈ P such that

∀I ∈ J :
∑

X∈I
g(X) ≥ 1:

The fractional matching number �∗(t; `; t − s) and fractional covering number �∗(t; `; t − s) are
de�ned by

�∗(t; `; t− s) , max
{∑

I∈J
f(I) : f is a fractional matching of P

}
;
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�∗(t; `; t− s) , min
{ ∑

X∈P
g(X) : g is a fractional point cover of J

}
:

Lemma 2. We have �∗(t; `; t− s) = �∗(t; `; t− s) = min
`≤m≤t−s

( t
m

)
=
(t−s−`
m−`

)
:

Proof of Lemma 2. The �rst equality follows from the Duality Theorem of linear pro-
gramming. Suppose that the minimum in the right-hand side is attained at m = m0. To prove
the second equality, it is enough to �nd a fractional matching f and a fractional point cover g
such that

∑

I∈J
f(I) =

( t
m0

)
(t−s−`
m0−`

) =
∑

X∈P
g(X): (8)

We choose
f(I) , 1(m0

`
)( t−m0
t−s−m0

) for all I ∈ J

and
g(X) ,

{ 0; if |X| 6= m0;
1

(t−s−`m0−`)
; if |X| = m0.

The function f is a fractional matching since

∑

I3X
f(I) =

(|X|
`

)( t−|X|
t−s−|X|

)
(m0
`

)( t−m0
t−s−m0

) =
( t
m0

)
=
(t−s−`
m0−`

)
( t
|X|

)
=
(t−s−`
|X|−`

) ≤ 1 for all X ∈ P ;

and g is a fractional point cover since

∑

X∈I
g(X) =

(t−s−`
m0−`

)
(t−s−`
m0−`

) = 1 for all I ∈ J:

The equality (8) can be veri�ed by straightforward computation using equality (7).
Lemma 3. For �xed `; s and t→∞, the number �∗(t; `; t− s) ∼ (s+l)s+l

ssll .
Proof of Lemma 3. Let `; s and u, 0 < u < 1, be �xed. If t→∞ and m ∼ ut, then

( t
m

)
(t−s−`
m−`

) = t(t− 1) · · · [t− (s+ `− 1)]
{[m− (`− 1)] · · ·m} · {[(t−m)− (s− 1)] · · · (t−m)} ∼

[
u` · (1− u)s

]−1
:

Using the de�nition of �∗(t; `; t− s) in Lemma 2, we have

�∗(t; `; t− s) ∼
{

max
0<u<1

[
u` · (1− u)s

]}−1
=

{
ssl`

(s+ `)s+`

}−1

;

where the maximum is achieved at u = `
`+s .

Lemma 4. For any x = 0; 1; : : : ; s− 1 and y = 0; 1; : : : ; `− 1,

�(t; `; t− s)
�(t− x− y; `− y; t− s− y) ≥ �∗(t; y; t− x):
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Proof of Lemma 4. Let T , |T | = �(t; `; t − s) be an optimal point cover of J(t; `; t − s).
We have 0 ≤ y < ` < t− s < t− x and T ⊂ P (t; `; t− s) ⊂ P (t; y; t− x). For X ∈ P (t; y; t− x),
we de�ne the function

g(X) ,
{

1=�(t− x− y; `− y; t− s− y); if X ∈ T ,
0; otherwise.

It is enough to show that g is a fractional point cover of J(t; y; t − x). Consider an arbitrary
interval I ∈ J(t; y; t− x) which is isomorphic to the Boolean lattice Bt−x−y. Moreover, the part
of I which lies between levels ` and t− s is isomorphic to P (t−x− y; `− y; t− s− y). Since the
considered set T is a point cover of J(t; `; t− s) the intersection T ∩ I must be a point cover of
the corresponding set of intervals J(t− x− y; `− y; t− s− y). Thus,

∑

X∈I
g(X) ≥ |T ∩ I|

�(t− x− y; `− y; t− s− y) ≥ 1:

Proof of Theorem 2. If t′ , t− x− y, then t− s− y = t′ − (s− x). Using Lemma 1, we
have �(t − x − y; ` − y; t − s − y) = N(t − x − y; ` − y; s − x). Therefore, we can rewrite the
inequality from Lemma 4 in the form

N(t; `; s) ≥ �∗(t; y; t− x) ·N(t− x− y; `− y; s− x):

For s; `; x; y �xed and t→∞, the application of Lemma 3 yields

N(t; `; s) ≥ (x+ y)x+y

xxyy ·N(t; `− y; s− x)(1 + o(1)): (9)

If we multiply by log2 t the opposite inequality for reciprocals in (9) and pass to the limit, then
we obtain inequality (5).

Theorem 2 is proved.
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