Upper Bounds on the Rate of Superimposed (s, ℓ)-Codes Based on Engel's Inequality ${ }^{1}$

A.G. D'yachkov, P.A. Vilenkin, S.A. Yekhanin
Moscow State University, Faculty of Mechanics and Mathematics, Department of Probability Theory, Moscow, 119992, Russia
dyachkov@mech.math.msu.su, paul@vilenkin.dnttm.ru, yekhanin@cityline.ru

Abstract

Applying an important combinatorial result of K. Engel [2], we improve upper bounds on the rate of superimposed (s, ℓ) - codes obtained in $[3,4]$.

1 Definitions and Formulations of Results

We use the symbol \triangleq to denote definitional equalities.
Let $N \geq 1, t \geq 1, s \geq 1$ and $\ell \geq 1$, where $s+\ell \leq t$, be arbitrary integers. A family of t binary codewords of length N is called a superimposed (s, ℓ)-code [3, 4] of size t and length N if for any two non-intersecting subsets of codewords \mathcal{S} of size $|\mathcal{S}|=s$ and $\mathcal{L},|\mathcal{L}|=\ell$, there exists a coordinate $k, k=1,2, \ldots, N$, in which all codewords from set \mathcal{S} have 0 's and all codewords from set \mathcal{L} have 1's.

Let $N(t, \ell, s)=N(t, s, \ell)$ denote the minimal possible length of superimposed (s, ℓ) - code of size t. For fixed s and ℓ, the number

$$
R(\ell, s)=R(s, \ell) \triangleq \varlimsup_{t \rightarrow \infty} \frac{\log _{2} t}{N(t, \ell, s)}
$$

is called [3, 4] a rate of superimposed (s, ℓ) - code.
Let $h(u) \triangleq-u \log _{2} u-(1-u) \log _{2}(1-u), 0<u<1$, be the binary entropy. To formulate the upper bound on the rate $R(s, \ell), s \geq \ell \geq 1$, we introduce the function [1]

$$
\mathrm{f}_{s}(v) \triangleq h(v / s)-v h(1 / s), \quad s=1,2, \ldots,
$$

of argument $v, 0<v<1$. The following three statements are true.
Theorem 1. 1. If $s=1,2, \ldots$, then the rate $R(s, 1) \leq \bar{R}(s, 1)$, where

$$
\begin{equation*}
\bar{R}(1,1)=R(1,1)=1, \quad \bar{R}(2,1) \triangleq \max _{0<v<1} f_{2}(v)=0.321928 \tag{1}
\end{equation*}
$$

and sequence $\bar{R}(s, 1), s=3,4, \ldots$, is defined recurrently as the unique solution of the equation

$$
\begin{equation*}
\bar{R}(s, 1)=\mathrm{f}_{s}\left(1-\frac{\bar{R}(s, 1)}{\bar{R}(s-1,1)}\right) . \tag{2}
\end{equation*}
$$

2. The rate

$$
\begin{equation*}
R(2,2) \leq \bar{R}(2,2) \triangleq \bar{R}(2,1) / 2=0.160964 \tag{3}
\end{equation*}
$$

[^0]3. If $s>\ell \geq 2$ or $s \geq \ell \geq 3$, then the rate $R(s, \ell)$ satisfies the inequality
\[

$$
\begin{equation*}
R(s, \ell) \leq \bar{R}(s, \ell) \triangleq \min _{x=0,1, \ldots, s-1} \min _{y=0,1, \ldots, \ell-1}\left\{\bar{R}(s-x, \ell-y) \cdot \frac{x^{x} \cdot y^{y}}{(x+y)^{x+y}}\right\} \tag{4}
\end{equation*}
$$

\]

where sequence $\bar{R}(s, 1), s=1,2, \ldots$, and the number $\bar{R}(2,2)$ are defined by (1)-(3).
The first statement was proved in [1] (see, also [4]). The second statement was proved in [4]. The third statement is an evident consequence of the following result obtained by K. Engel [2].

Theorem 2. (Engel's inequality [2].) If $s \geq \ell \geq 2$, then for any $x=0,1, \ldots, s-1$ and any $y=0,1, \ldots, \ell-1$, the rate

$$
\begin{equation*}
R(s, \ell) \leq R(s-x, \ell-y) \cdot \frac{x^{x} \cdot y^{y}}{(x+y)^{x+y}} \tag{5}
\end{equation*}
$$

In section 3, we briefly present the proof of Theorem 2 from paper [2]. The numerical values of upper bound $\bar{R}(s, \ell), 1 \leq \ell \leq s \leq 4$, are:

$$
\begin{array}{llll}
\bar{R}(2,1)=.32193, & \bar{R}(3,1)=.19928, & \bar{R}(4,1)=.14046, & \bar{R}(2,2)=.16096 \\
\bar{R}(3,2)=.08048, & \bar{R}(4,2)=.04769, & \bar{R}(3,3)=.04024, & \bar{R}(4,3)=.02012
\end{array}
$$

and $\bar{R}(4,4)=.01006$.

2 Asymptotics of $\bar{R}(s, \ell)$

If $s \rightarrow \infty$ and $\ell \geq 2$ is fixed, then the optimal values of x and y in definition (4) of $\bar{R}(s, \ell)$ are $y=\ell-1, x \sim p s, 0<p<1$, and

$$
\bar{R}(s, \ell) \sim \min _{0<p<1}\left\{\bar{R}(s(1-p), 1) \cdot \frac{(p s)^{p s} \cdot(\ell-1)^{\ell-1}}{(p s+\ell-1)^{p s+\ell-1}}\right\} .
$$

Using the asymptotic $(s \rightarrow \infty)$ form [1, 4] of upper bound $\bar{R}(s, 1) \sim 2 \log s / s^{2}$, we get

$$
\begin{equation*}
\bar{R}(s, \ell) \sim \min _{0<p<1}\left\{\frac{2 \log [s(1-p)]}{s^{2}(1-p)^{2}} \cdot \frac{(p s)^{p s} \cdot(\ell-1)^{\ell-1}}{(p s+\ell-1)^{p s+\ell-1}}\right\} \sim \frac{(\ell+1)^{\ell+1}}{2 e^{\ell-1}} \cdot \frac{\log s}{s^{\ell+1}}, \tag{6}
\end{equation*}
$$

where $\mathrm{e}=2.71828$ is the base of natural logarithm and we took into account that

$$
\max _{0<p<1}\left\{(1-p)^{2} p^{\ell-1}\right\}=(\ell-1)^{\ell-1} \frac{4}{(\ell+1)^{\ell+1}}
$$

with the optimal value $p=\frac{\ell-1}{\ell+1}$. For $\ell \geq 2$, upper bound (6) is better than the similar upper bound

$$
\bar{R}_{\text {old }}(s, \ell) \sim(\ell+1)!\cdot \frac{\log s}{s^{\ell+1}}
$$

which was obtained in [4].

3 Proof of Engel's inequality

Let $1 \leq \ell<t, 1 \leq s \leq t$, where $2 \leq s+\ell \leq t$, be arbitrary integers, $[t] \triangleq\{1,2, \ldots, t\}$ and the set B_{t} of size $\left|B_{t}\right|=2^{t}$ be the Boolean lattice constituted of all subsets of $[t]$.

Introduce the set $P=P(t, \ell, t-s) \subseteq B_{t},|P|=|P(t, \ell, t-s)|=\sum_{n=\ell}^{t-s}\binom{t}{n}$, whose elements are n-subsets of $[t]$, where $\ell \leq n \leq t-s$. Let $Z \subseteq Y \subseteq[t]$ be arbitrary subsets of $[t]$. Denote by $J=J(t, \ell, t-s)$ the set of all intervals $I=I(Z, Y)$:

$$
I=I(Z, Y) \triangleq\{X: X \in P, Z \subseteq X \subseteq Y\}, \quad \text { where } \quad|Z|=\ell,|Y|=t-s,|[t] \backslash Y|=s
$$

Obviously, each interval $I \in J$ is isomorphic to $B_{t-s-\ell}$ and $|I|=2^{t-s-\ell}$. In addition, any element $X \in P$ is contained in $\binom{|X|}{\ell}\binom{t-|X|}{t-s-|X|}$ intervals of J. Taking all X with $|X|=\ell$ (resp. all X with $|X|=t-s)$ we obtain

$$
\begin{equation*}
|J|=\binom{t}{\ell}\binom{t-\ell}{t-s-\ell}=\binom{t}{t-s}\binom{t-s}{\ell} . \tag{7}
\end{equation*}
$$

A set $T \subseteq P$ is called a point cover of J if for any interval $I \in J$, the intersection $T \cap I \neq \varnothing$. The minimal size of point cover T is denoted by $\tau(t, \ell, t-s)$.

Lemma 1. The minimal length of superimposed (s, ℓ)-code $N(t, \ell, s)=\tau(t, \ell, t-s)$.
Proof of Lemma 1. Let C be a superimposed (s, ℓ)- code of length N and size t. Fix an order over codewords of $C=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$. Introduce the following correspondence between coordinates of codewords $c_{1}, c_{2}, \ldots, c_{t}$ and subsets of $[t]$: a set $X_{k} \subseteq[t]$ corresponding to a coordinate $k, k=1,2, \ldots, N$, contains the numbers i of codewords c_{i} having 1's in the k-th coordinate. Without loss of generality, $\ell \leq\left|X_{k}\right| \leq t-s$. Consider the set $T \triangleq\left\{X_{1}, X_{2}, \ldots, X_{N}\right\} \subseteq P=$ $P(t, \ell, t-s)$. Take an arbitrary interval $I=I(Z, Y) \in J=J(t, \ell, t-s)$. By definition of the superimposed (s, ℓ) - code C, there exists a coordinate k such that all codewords with numbers in Z have 1's in the k-th coordinate and all codewords with numbers in $[t] \backslash Y$ have 0's in the k-th coordinate, i.e., $Z \subseteq X_{k} \subseteq Y$. Hence, $X_{k} \in I$ and $T \cap I \neq \varnothing$. Therefore, T is a point cover of J. Thus, we have proved that $N \geq \tau(t, \ell, t-s)$, i.e., $N(t, \ell, s) \geq \tau(t, \ell, t-s)$. To prove $N(t, \ell, s) \leq \tau(t, \ell, t-s)$ one needs to check that superimposed (s, ℓ)-code can be constructed from a point cover using the correspondence described above.

We introduce several additional definitions. A fractional matching of $P=P(t, \ell, t-s)$ is a function $\quad f=f(I) \geq 0, \quad I \in J=J(t, \ell, t-s) \quad$ such that

$$
\forall X \in P: \quad \sum_{I \ni X} f(I) \leq 1 .
$$

A fractional point cover of J is a function $g=g(X) \geq 0, \quad X \in P \quad$ such that

$$
\forall I \in J: \quad \sum_{X \in I} g(X) \geq 1 .
$$

The fractional matching number $\nu^{*}(t, \ell, t-s)$ and fractional covering number $\tau^{*}(t, \ell, t-s)$ are defined by

$$
\nu^{*}(t, \ell, t-s) \triangleq \max \left\{\sum_{I \in J} f(I): f \text { is a fractional matching of } P\right\},
$$

$$
\tau^{*}(t, \ell, t-s) \triangleq \min \left\{\sum_{X \in P} g(X): g \text { is a fractional point cover of } J\right\}
$$

Lemma 2. We have $\nu^{*}(t, \ell, t-s)=\tau^{*}(t, \ell, t-s)=\min _{\ell \leq m \leq t-s}\binom{t}{m} /\binom{t-s-\ell}{m-\ell}$.
Proof of Lemma 2. The first equality follows from the Duality Theorem of linear programming. Suppose that the minimum in the right-hand side is attained at $m=m_{0}$. To prove the second equality, it is enough to find a fractional matching f and a fractional point cover g such that

$$
\begin{equation*}
\sum_{I \in J} f(I)=\frac{\binom{t}{m_{0}}}{\binom{-s-\ell}{m_{0}-\ell}}=\sum_{X \in P} g(X) . \tag{8}
\end{equation*}
$$

We choose

$$
f(I) \triangleq \frac{1}{\binom{m_{0}}{\ell}\binom{t-m_{0}}{t-s-m_{0}}} \quad \text { for all } I \in J
$$

and

$$
g(X) \triangleq \begin{cases}0, & \text { if }|X| \neq m_{0} \\ \frac{1}{\left(\frac{t-s-\ell}{m_{0}-\ell}\right)}, & \text { if }|X|=m_{0}\end{cases}
$$

The function f is a fractional matching since

$$
\sum_{I \ni X} f(I)=\frac{\binom{|X|}{\ell}\binom{t-|X|}{t-s-|X|}}{\binom{m_{0}}{\ell}\binom{t-m_{0}}{t-s-m_{0}}}=\frac{\binom{t}{m_{0}} /\binom{t-s-\ell}{m_{0} \ell}}{\binom{t}{|X|} /\binom{t-s-\ell}{|X|-\ell}} \leq 1 \quad \text { for all } X \in P,
$$

and g is a fractional point cover since

$$
\sum_{X \in I} g(X)=\frac{\binom{t-s-\ell}{m_{0}-\ell}}{\binom{t-s-\ell}{m_{0}-\ell}}=1 \quad \text { for all } \quad I \in J
$$

The equality (8) can be verified by straightforward computation using equality (7).
Lemma 3. For fixed ℓ, s and $t \rightarrow \infty$, the number $\tau^{*}(t, \ell, t-s) \sim \frac{(s+l)^{s+l}}{s^{s} l^{l}}$.
Proof of Lemma 3. Let ℓ, s and $u, 0<u<1$, be fixed. If $t \rightarrow \infty$ and $m \sim u t$, then

$$
\frac{\binom{t}{m}}{\binom{t-s-\ell}{m-\ell}}=\frac{t(t-1) \cdots[t-(s+\ell-1)]}{\{[m-(\ell-1)] \cdots m\} \cdot\{[(t-m)-(s-1)] \cdots(t-m)\}} \sim\left[u^{\ell} \cdot(1-u)^{s}\right]^{-1} .
$$

Using the definition of $\tau^{*}(t, \ell, t-s)$ in Lemma 2, we have

$$
\tau^{*}(t, \ell, t-s) \sim\left\{\max _{0<u<1}\left[u^{\ell} \cdot(1-u)^{s}\right]\right\}^{-1}=\left\{\frac{s^{s} l^{\ell}}{(s+\ell)^{s+\ell}}\right\}^{-1}
$$

where the maximum is achieved at $u=\frac{\ell}{\ell+s}$.
Lemma 4. For any $x=0,1, \ldots, s-1$ and $y=0,1, \ldots, \ell-1$,

$$
\frac{\tau(t, \ell, t-s)}{\tau(t-x-y, \ell-y, t-s-y)} \geq \tau^{*}(t, y, t-x)
$$

Proof of Lemma 4. Let $T,|T|=\tau(t, \ell, t-s)$ be an optimal point cover of $J(t, \ell, t-s)$. We have $0 \leq y<\ell<t-s<t-x$ and $T \subset P(t, \ell, t-s) \subset P(t, y, t-x)$. For $X \in P(t, y, t-x)$, we define the function

$$
g(X) \triangleq \begin{cases}1 / \tau(t-x-y, \ell-y, t-s-y), & \text { if } X \in T \\ 0, & \text { otherwise }\end{cases}
$$

It is enough to show that g is a fractional point cover of $J(t, y, t-x)$. Consider an arbitrary interval $I \in J(t, y, t-x)$ which is isomorphic to the Boolean lattice B_{t-x-y}. Moreover, the part of I which lies between levels ℓ and $t-s$ is isomorphic to $P(t-x-y, \ell-y, t-s-y)$. Since the considered set T is a point cover of $J(t, \ell, t-s)$ the intersection $T \cap I$ must be a point cover of the corresponding set of intervals $J(t-x-y, \ell-y, t-s-y)$. Thus,

$$
\sum_{X \in I} g(X) \geq \frac{|T \cap I|}{\tau(t-x-y, \ell-y, t-s-y)} \geq 1
$$

Proof of Theorem 2. If $t^{\prime} \triangleq t-x-y$, then $t-s-y=t^{\prime}-(s-x)$. Using Lemma 1, we have $\tau(t-x-y, \ell-y, t-s-y)=N(t-x-y, \ell-y, s-x)$. Therefore, we can rewrite the inequality from Lemma 4 in the form

$$
N(t, \ell, s) \geq \tau^{*}(t, y, t-x) \cdot N(t-x-y, \ell-y, s-x)
$$

For s, ℓ, x, y fixed and $t \rightarrow \infty$, the application of Lemma 3 yields

$$
\begin{equation*}
N(t, \ell, s) \geq \frac{(x+y)^{x+y}}{x^{x} y^{y}} \cdot N(t, \ell-y, s-x)(1+o(1)) \tag{9}
\end{equation*}
$$

If we multiply by $\log _{2} t$ the opposite inequality for reciprocals in (9) and pass to the limit, then we obtain inequality (5).

Theorem 2 is proved.

References

[1] A.G. D'yachkov, V.V. Rykov, "Bounds on the Length of Disjunct Codes", Problemy Peredachi Informatsii, 17, 1982, n. 3, pp. 7-13, (in Russian).
[2] K. Engel, "Interval Packing and Covering in the Boolean Lattice", Combinatorics Prob. and Computing, 5, 1996, pp. 373-384.
[3] A.G. D'yachkov, A.J. Macula, D.C. Torney, P.A. Vilenkin, S.M. Yekhanin, "New Results in the Theory of Superimposed Codes", Proc. of the 7-th Inter. Workshop "Algebraic and Combinatorial Coding Theory", ACCT-7, Bansko, Bulgaria, June 17-24, 2000, pp. 126-136.
[4] A.G. D'yachkov, A.J. Macula, D.C. Torney, P.A. Vilenkin, "Families of Finite Sets in which No Intersection of ℓ Sets Is Covered by the Union of s Others", J. Comb. Theory, ser. A, 99, 2002, pp. 195-218.

[^0]: ${ }^{1}$ Work was supported by the Russian Foundation of Basic Research, grant N. 01-01-00495 and the INTAS, grant N. 00-738

