New Results in the Theory of Superimposed Codes: Part I

A. D'yachkov ${ }^{1}$, A. Macula ${ }^{2}$, D. Torney ${ }^{3}$, P. Vilenkin ${ }^{1}$, S. Yekhanin ${ }^{1}$

Abstract

We introduce and discuss the concept of a binary superimposed (s, ℓ)-code identified by a family of finite sets in which no intersection of ℓ sets is covered by the union of s others. Upper and lower bounds on the rate of these codes are formulated. Their proofs will be given in [7]. Several constructions of these codes are considered in the second part of the present paper [6].

1 Notations and Definitions

In what follows, symbol \triangleq denotes equalities by definition. For any positive integer n, we put $[n] \triangleq\{1,2, \ldots, n\}$.

Let N and t be positive integers. Consider a set $\mathcal{C} \triangleq\{\mathbf{x}(1), \ldots, \mathbf{x}(t)\}$, composed of t mutually different binary vectors (codewords) of length N; $\mathbf{x}(j)=\left(x_{1}(j), \ldots, x_{N}(j)\right), x_{i}(j) \in\{0,1\}, j \in[t]$.

In what follows, we fix positive integers s and ℓ, such that $s+\ell \leq t$
Definition 1. A set \mathcal{C} is called a superimposed (s, ℓ)-code (or, briefly (s, ℓ)-code $)$ if for any two sets $\mathcal{S}, \mathcal{L} \subset[t]$, such that $|\mathcal{S}|=s,|\mathcal{L}|=\ell$ and $\mathcal{S} \cap \mathcal{L}=\varnothing$, these exists a position $i \in[N]$, for which $x_{i}(j)=1$ for all $j \in \mathcal{L}$, and $x_{i}\left(j^{\prime}\right)=0$ for all $j^{\prime} \in \mathcal{S}$.

Integers N and t are called the length and size of code \mathcal{C}, respectively.
For the binary vectors $\mathbf{x} \triangleq\left(x_{1}, \ldots, x_{N}\right)$ and $\mathbf{y} \triangleq\left(y_{1}, \ldots, y_{N}\right)$, we consider the disjunction operation $\mathbf{x} \bigvee \mathbf{y}$ and conjunction operation $\mathbf{x} \bigwedge \mathbf{y}$ defined component-wise, where $0 \vee 0=0,0 \vee 1=1 \vee 0=1 \vee 1=1$,

[^0]$0 \wedge 0=0 \wedge 1=1 \wedge 0=0,1 \wedge 1=1$. We say that vector \mathbf{x} is covered by vector \mathbf{y} if $\mathbf{x} \bigvee \mathbf{y}=\mathbf{y}$.

Remark. Obviously, definition 1 is equivalent to the condition:

$$
\bigwedge_{j \in \mathcal{L}} \mathbf{x}(j) \text { is not covered by } \bigvee_{j^{\prime} \in \mathcal{S}} \mathbf{x}\left(j^{\prime}\right) .
$$

An interpretation of an (s, ℓ)-code as a family of set with certain properties is given in "Part II" of the present paper [6].

Consider the collection $\mathcal{P}(s, \ell, t)$, composed of supersets p :

$$
\mathcal{P}(s, \ell, t) \triangleq\left\{\mathrm{p}=\left\{P_{1}, \ldots, P_{k}\right\}: 1 \leq k \leq s, \begin{array}{l}
P_{i} \subset[t],\left|P_{i}\right| \leq \ell \\
P_{i} \nsubseteq P_{i^{\prime}} \text { for } i \neq i^{\prime}
\end{array}\right\}
$$

We call an element $\mathrm{p} \in \mathcal{P}(s, \ell, t)$ a positive supersets, and an element $P \in \mathrm{p}$ - a positive set in terms of superset p .

For a positive superset $\mathrm{p} \in \mathcal{P}(s, \ell, t)$ and a set $\mathcal{C} \triangleq\{\mathbf{x}(1), \ldots, \mathbf{x}(t)\}$ define the output vector $\mathbf{o}=\mathbf{o}(\mathrm{p}, \mathcal{C})$ as follows:

$$
\begin{equation*}
\mathbf{o}(\mathrm{p}, \mathcal{C}) \triangleq \bigvee_{P \in \mathfrak{p}} \bigwedge_{j \in P} \mathbf{x}(j) \tag{1}
\end{equation*}
$$

Definition 2. A set \mathcal{C} is called a superimposed (s, ℓ)-design (or, briefly, (s, ℓ)-design $)$, if $\mathbf{o}\left(\mathbf{p}_{1}, \mathcal{C}\right) \neq \mathbf{o}\left(\mathbf{p}_{2}, \mathcal{C}\right)$ for any $\mathbf{p}_{1}, \mathbf{p}_{2} \in \mathcal{P}(s, \ell, t)$, $\mathrm{p}_{1} \neq \mathrm{p}_{2}$.

Proposition 1. [7] 1) Any (s, ℓ)-code is an (s, ℓ)-design. 2) Any (s, ℓ)-design is an $(s-1, \ell)$-code and an $(s, \ell-1)$-code.

2 Background and Motivations

For the special case $\ell=1$, a superimposed $(s, 1)$-code $((s, 1)$-design) is called a superimposed s-code (s-design). They were introduced in [1] and studied in $[2,3,4]$. See also the book [5].

Superimposed (s, ℓ)-codes and designs arise from the problem of group testing for supersets, which can be stated as follows. Assume that we have a set of t objects (we identify them by integers $j \in[t]$), in which several subsets $P_{1}, \ldots, P_{k} \subset[t]$ are positive. Assume that a number of positive subsets $k \leq s$, and the size of each positive subset is
not greater then ℓ. Our aim is to determine all positive subsets using a finite number of tests. In each test we take a group $G \subset[t]$ and examine it. The test result $r(G)=1$ (positive) if $P_{m} \subseteq G$ for some $m \in[k]$, and $r(G)=0$ (negative) otherwise.

Let $\mathbf{G} \triangleq\left(G_{1}, \ldots, G_{N}\right)$ be N testing groups. In the current model we use nonadaptive testing, which means that we select all groups before any test is performed. Let vector $\mathbf{r}=\mathbf{r}(\mathbf{G}) \triangleq\left(r\left(G_{1}\right), \ldots, r\left(G_{N}\right)\right)$ represent the results of N tests.

Encode the testing groups by the set $\mathcal{C}=\{\mathbf{x}(1), \ldots, \mathbf{x}(t)\}$, where $x_{i}(j)=1$ if element $j \in G_{i}$, and $x_{i}(j)=0$ otherwise. Denote by p the superset composed of positive sets P_{1}, \ldots, P_{k}. Then one can see that the binary output vector $\mathbf{o}(\mathbf{p}, \mathcal{C})=\mathbf{r}(\mathbf{G})$, see (1).

Our aim can be formulated as follows: construct a set \mathcal{C} so that any unknown positive superset $\mathrm{p}^{\mathrm{un}} \in \mathcal{P}(s, \ell, t)$ could be determined (decoded) given the known output vector $\mathbf{o}^{\mathrm{kn}}=\mathbf{o}\left(\mathrm{p}^{\mathrm{un}}, \mathcal{C}\right)$.

Obviously, it is possible if and only if the output vectors are different for any positive sets, i.e., if \mathcal{C} is an (s, ℓ)-design (see definition 2). The decoding algorithm in general case has the following form: look over all supersets $\mathrm{p} \in \mathcal{P}(s, \ell, t)$, for each of them calculate the output vector $\mathbf{o}\left(\mathrm{p}^{\prime}, \mathcal{C}\right)$ and compare it with the given vector \mathbf{o}^{kn}. The decoding complexity of this algorithm is proportional to the size $|\mathcal{P}(s, \ell, t)| \sim t^{s \ell} / s!(\ell!)^{s}$, when $t \rightarrow \infty$, while s and ℓ are fixed.

Since any (s, ℓ)-code \mathcal{C} is also an (s, ℓ)-design (proposition 1), it also can be used for decoding supersets. Moreover, in this case the following decoding algorithm can be used:

1. Look over all sets $P \subset[t],|\mathcal{P}| \leq \ell$, using increasing order of sizes, except those, which contain any positive set $P_{m} \in \mathrm{p}^{\text {un }}$ of smaller size found before.
2. For each such set P calculate the output vector $\mathbf{o}(\{P\}, \mathcal{C})$.
3. P is positive set $\left(P \in \mathrm{p}^{\mathrm{un}}\right)$ if and only if $\mathbf{o}(\{P\}, \mathcal{C})$ is covered by the given vector \mathbf{o}^{kn}.

The decoding complexity of this algorithm is proportional to the number of such sets P, which is $\sim t^{s} / s!$, when $t \rightarrow \infty, s$ and ℓ are fixed.

If $\ell=1$, then each positive set P contains exactly one element, which is called the positive element. See [5] for the more detailed investigation of the group testing and its applications.

3 Properties of (s, ℓ)-codes

Denote by $N(t, s, \ell)$ and $N^{\prime}(t, s, \ell)$ the minimum possible length of (s, ℓ) code and (s, ℓ)-design of size t, respectively. Denote by $t(N, s, \ell)$ and $t^{\prime}(N, s, \ell)$ the maximum possible size of (s, ℓ)-code and (s, ℓ)-design of length N, respectively.

Proposition 1 yields the inequalities

$$
\begin{gathered}
\max \{N(t, s-1, \ell), N(t, s, \ell-1)\} \leq N^{\prime}(t, s, \ell) \leq N(t, s, \ell), \\
\min \{t(N, s-1, \ell), t(N, s, \ell-1)\} \geq t^{\prime}(N, s, \ell) \geq t(N, s, \ell) .
\end{gathered}
$$

Proposition 2. (Trivial (s, ℓ)-code). Take an integer w, such that $\ell \leq w \leq t-s$. Put $N \triangleq\binom{t}{w}$ and consider a set of codewords \mathcal{C}, for which $\mathbf{x}_{i} \triangleq\left(x_{i}(1), \ldots, x_{i}(t)\right), i \in[N]$, are all possible binary vectors of weight w. Then \mathcal{C} is an (s, ℓ)-code and, therefore,

$$
\begin{equation*}
N(t, s, \ell) \leq \min \left\{\binom{t}{s},\binom{t}{\ell}\right\}=\binom{t}{\min \{s, \ell\}} \tag{2}
\end{equation*}
$$

If $t=s+\ell$, then this condition holds with the sign of equality.
Inequality (2) can be generalized as follows:

$$
\begin{equation*}
N(t, s, \ell) \leq \min \left\{\binom{N(t, \ell, 1)}{s},\binom{N(t, s, 1)}{\ell}\right\} . \tag{3}
\end{equation*}
$$

Inequality (2) follows from (3) and the trivial bound on the length of superimposed s-codes $N(t, s, 1) \leq t$. It also gives the way to construct (s, ℓ)-codes based on the s-codes, see "Part II" of the present paper [6].

Proposition 3. (Symmetry). If \mathcal{C} an (s, ℓ)-code, then a set $\overline{\mathcal{C}}$, which is obtained by replacing $0 \longleftrightarrow 1$ in \mathcal{C}, is an (ℓ, s)-code. Hence,

$$
N(t, s, \ell)=N(t, \ell, s), \quad t(N, s, \ell)=t(N, \ell, s) .
$$

4 Bounds on the Rate

For fixed $1 \leq \ell \leq s$, we define a rate of a superimposed (s, ℓ)-code

$$
R(s, \ell) \triangleq \varlimsup_{N \rightarrow \infty} \frac{\log _{2} t(N, s, \ell)}{N}=\varlimsup_{t \rightarrow \infty} \frac{\log _{2} t}{N(t, s, \ell)}
$$

Proposition 3 yields the symmetry property of the rate: $R(s, \ell)=R(\ell, s)$. Taking this into account, in what follows we assume that $s \geq \ell$.

One can prove the following trivial upper bound on the rate:

$$
R(s, \ell) \leq \frac{1}{s \ell}
$$

The better bound is obtained by the method which was used in [2] for the case $\ell=1$. Consider the functions

$$
\begin{gathered}
h(p) \triangleq-p \log _{2} p-(1-p) \log _{2}(1-p), \quad 0<p<1, \\
f_{s}(v) \triangleq h(v / s)-v h(1 / s), \quad 0<v<1, \quad s>1 .
\end{gathered}
$$

Proposition 4. [7] For $s \geq \ell \geq 1$ the rate

$$
R(s, \ell) \leq \bar{R}(s, \ell) \triangleq \frac{1}{d(s, \ell)}
$$

where $d(s, \ell)$ for $s \geq \ell \geq 1$ is defined recurrently:

- if $\ell=1$, then $d(1,1) \triangleq 1, d(2,1)$ has the form

$$
d(2,1) \triangleq\left[\max _{0 \leq v \leq 1} f_{2}(v)\right]^{-1}=f_{2}(0.4)^{-1} \approx 3.106
$$

and for $s \geq 3$ the number $d(s, 1)$ is the unique solution of the equation

$$
d(s, 1)=\left[f_{s}\left(1-\frac{d(s-1,1)}{d(s, 1)}\right)\right]^{-1}, \quad d(s, 1) \geq d(s-1,1)
$$

- if $\ell \geq 2$, then for $s \geq \ell$

$$
d(s, \ell) \triangleq \sum_{k=1}^{s-\ell+1} d(s-k+1, \ell-1)+d(\ell, \ell-1)
$$

The lower bound is obtained by the random coding method.
Proposition 5. [7] For $s \geq \ell \geq 1$ the rate

$$
R(s, \ell) \geq \underline{R}(s, \ell) \triangleq \frac{\max \left\{E_{1}(s, \ell), E_{2}(s, \ell)\right\}}{s+\ell-1}>0
$$

where

$$
\begin{gathered}
E_{1}(s, \ell) \triangleq-\log _{2}\left(1-\frac{s^{s} \ell^{\ell}}{(s+\ell)^{s+\ell}}\right) \\
E_{2}(s, \ell) \triangleq \max _{q=2,3, \ldots}-\log _{2}\left(1-\left(\frac{1}{q}\right)^{\ell-1}\left(1-\frac{1}{q}\right)^{s}\right) / q .
\end{gathered}
$$

The asymptotic properties of the lower bound is given by
Proposition 6. Let $s \rightarrow \infty$ and $\ell \geq 2$ be fixed. Then the lower bound

$$
\underline{R}(s, \ell) \sim \frac{\ell^{\ell} e^{-\ell} \log _{2} e}{s^{\ell+1}} .
$$

References

[1] W.H. Kautz, R.C. Singleton, "Nonrandom Binary Superimposed Codes," IEEE Trans. Inform. Theory, 4 (1964), 363-377.
[2] A. D'yachkov, V.Rykov, "Bounds on the Length of Disjunct Codes," Problemy Peredachi Informatsii, 3 (1982), 7-13, (in Russian).
[3] P. Erdos, P. Frankl, Z. Furedi, "Families of Finite Sets in which No Set Is Covered by the Union of r Others," Israel Journal of Math., 1-2 (1985), 75-89.
[4] A. D'yachkov, V.Rykov, A.M. Rashad, "Superimposed Distance Codes," Problems of Control and Inform. Theory, 4 (1989), 237-250.
[5] D.-Z. Du, F.K. Hwang, Combinatorial Group Testing and Its Applications, World Scientific, Singapore-New Jersey-London-Hong Kong, 1993.
[6] A. D'yachkov, A. Macula, D. Torney, P. Vilenkin, S. Yekhanin, "New Results in the Theory of Superimposed Codes: Part II," present volume.
[7] A. D'yachkov, A. Macula, D. Torney, P. Vilenkin, "Families of Finite Sets in which No Intersection of ℓ Sets is Covered by the Union of s Others," submitted for publication.

New Results in the Theory of Superimposed Codes: Part II

A. D'yachkov ${ }^{1}$, A. Macula ${ }^{2}$, D. Torney ${ }^{3}$, P. Vilenkin ${ }^{1}$, S. Yekhanin ${ }^{1}$

Abstract

In the second part of the paper, we work out a constructive method for (s, ℓ)-codes [8] based on concatenated codes and MDS-codes [2,3]. The method is a generalization of the constructive method for $(s, 1)$-codes $[1,6]$. In addition, we discuss the constructions of the list-decoding superimposed codes [4, 7], identified by a family of finite sets in which no union of L sets is covered by the union of s others.

1 Notations and Definitions

We use notations and definitions from "Part I" of the present paper [8]. Let t and N be positive integers, and \mathcal{C} be a set of t binary codewords of length N :

$$
\begin{equation*}
\mathcal{C} \triangleq\{\mathbf{x}(1), \ldots, \mathbf{x}(t)\}, \quad \mathbf{x}(j) \triangleq\left(x_{1}(j), \ldots, x_{N}(j)\right) \in\{0,1\}^{N} . \tag{4}
\end{equation*}
$$

For any subset $\tau \subset[t]$ consider the disjunction and conjunction

$$
\begin{equation*}
\mathrm{V}(\tau) \triangleq \bigvee_{j \in \tau} \mathbf{x}(j), \quad \Lambda(\tau) \triangleq \bigwedge_{j \in \tau} \mathbf{x}(j) . \tag{5}
\end{equation*}
$$

For positive integers s and ℓ, such that $t \geq s+\ell$, put

$$
\begin{equation*}
\pi(s, \ell, t) \triangleq\{(\mathcal{S}, \mathcal{L}): \mathcal{S}, \mathcal{L} \subset[t],|\mathcal{S}|=s,|\mathcal{L}|=\ell, \mathcal{S} \cap \mathcal{L}=\varnothing\} \tag{6}
\end{equation*}
$$

Definition 1 [8]. A superimposed binary (s, ℓ)-code of length N and size t is a set $\mathcal{C}(4)$, such that for any pair $(\mathcal{S}, \mathcal{L}) \in \pi(s, \ell, t)$ the vector $\Lambda(\mathcal{L})$ is not covered by $\mathrm{V}(\mathcal{S})$.

Definition 2. A superimposed list-decoding code of strength s and list-size L is a set $\mathcal{C}(4)$, such that for any pair $(\mathcal{S}, \mathcal{L}) \in \pi(s, L, t)$ the vector $\mathrm{V}(\mathcal{L})$ is not covered by $\mathrm{V}(\mathcal{S})$.

[^1]If $|\tau|=1$, then $\mathrm{V}(\tau)=\Lambda(\tau)$. For this reason, for $\ell=L=1$ definitions 1 and 2 are equivalent, and a set \mathcal{C} in this case is called a binary superimposed code of strength s (or, briefly, s-code).

A codeword $\mathbf{x}(j)$ can be interpreted as a subset of the set $[N]$. Then $\mathrm{V}(\tau)$ is the union, and $\Lambda(\tau)$ is the intersection of corresponding sets. Taking this into account, a superimposed s-code can be identified by a family of sets in which no set is covered by a union of s others; a superimposed (s, ℓ)-code is identified by a family of sets in which no intersection of ℓ sets is covered by a union of s others; and a superimposed s-code with list-size L is identified by a family of sets in which no union of L sets is covered by a union of s others.

The applications of s-codes and (s, ℓ)-codes to the problem of identifying positive elements and positive sets in the group testing model are discussed in "Part I" of the present paper [8, Sec. 2]. Superimposed s-codes with list-size L can also be used in this model as follows: if $\mathrm{p} \subset[t]$ is a set of positive elements, $|\mathrm{p}| \leq s$, and testing groups form an s-code with list-size L, then given the test results one can construct a set $\mathrm{p}^{\prime} \subset[t]$, such that $\mathrm{p} \subseteq \mathrm{p}^{\prime}$ and $\left|\mathrm{p}^{\prime} \backslash \mathrm{p}\right| \leq L-1$. If $L=1$, then one can decode an unknown set p exactly.

2 Constructions of (s, ℓ)-codes

Trivial construction. Let \mathcal{C}^{\prime} be an $(s, 1)$-code of length N^{\prime} and size t. Put $N \triangleq\binom{N^{\prime}}{\ell}$ and let $\sigma_{1}, \ldots, \sigma_{N}$ be all ℓ-subsets of the set $\left[N^{\prime}\right]$. Construct a new code $\mathcal{C} \triangleq\{\mathbf{x}(1), \ldots, \mathbf{x}(t)\}$ of length N, for which

$$
x_{i}(j) \triangleq \bigvee_{m \in \sigma_{i}} x_{m}^{\prime}(j), \quad i \in[N], \quad j \in[t] .
$$

Then \mathcal{C} is an (s, ℓ)-code. This yields the bound [8, (3)].
Concatenated construction. Consider an integer $q \geq 2$ and a set \mathcal{C} (4), in which elements $x_{i}(j)$ are taken from the q-ary alphabet $[q]=\{1, \ldots, q\}$.

Definition 3. A q-ary set \mathcal{C} defined above is called a superimposed q-ary (s, ℓ)-code, if for any pair $(\mathcal{S}, \mathcal{L}) \in \pi(s, \ell, t)$ there exists a coordinate $i \in[n]$ for which the coordinate sets

$$
\mathcal{L}_{i} \triangleq\left\{x_{i}(j): j \in \mathcal{L}\right\} \subseteq[q] \quad \text { and } \quad \mathcal{S}_{i} \triangleq\left\{x_{i}\left(j^{\prime}\right): j^{\prime} \in \mathcal{S}\right\} \subseteq[q]
$$

are disjoint, i.e., $\mathcal{S}_{i} \cap \mathcal{L}_{i}=\varnothing$. Integers t and n are called the size and length of code \mathcal{C}, respectively.

Proposition 7. (Concatenated construction) Let $s \geq 1, \ell \geq 1, t \geq s+\ell$ and $q \geq s+\ell$ be integers. Assume that there exists a q-ary (s, ℓ)-code $\mathcal{C}^{(q)}=$ $\left\|x_{i}^{(q)}(j)\right\|$ of size $t^{(q)}$ and length $n^{(q)}$ and an (s, ℓ)-code $\mathcal{C}^{\prime}=\left\|x_{i}^{\prime}(j)\right\|$ of size
$t^{\prime} \geq q$ and length n^{\prime}. Then there exists a superimposed (s, ℓ)-code \mathcal{C} of size $t=t^{(q)}$ and length $N=n^{(q)} n^{\prime}$.

Proof. The code \mathcal{C} is constructed by the concatenation of codes $\mathcal{C}^{(q)}$ and \mathcal{C}^{\prime}, i.e., each q-ary symbol $\theta \in[q]$ in the code $\mathcal{C}^{(q)}$ is replaced with the codeword $\mathbf{x}^{\prime}(\theta)$ from the code \mathcal{C}^{\prime}. The j-th codeword of the new code \mathcal{C} has the form

$$
\mathbf{x}(j) \triangleq\left(\mathbf{x}^{\prime}\left(x_{1}^{(q)}(j)\right), \ldots, \mathbf{x}^{\prime}\left(x_{n^{\prime}}^{(q)}(j)\right)\right) .
$$

One can easily prove that this code \mathcal{C} is really an (s, ℓ)-code.
Proposition 8. Let $s=\ell=2$. Then the minimum length $N(t, 2,2)$ for $4 \leq t \leq 8$ has the form

$$
\begin{gathered}
N(4,2,2)=\binom{4}{2}=6, \quad N(5,2,2)=\binom{5}{2}=10, \\
N(6,2,2)=N(7,2,2)=N(8,2,2)=14 .
\end{gathered}
$$

Proof. For $t=s+\ell=4$ the optimal (s, ℓ)-code is trivial [8, Prop. 2]. For $t=5,6$ we used a computer exhaustive search: for $t=5$ the optimal (2,2)-code is trivial, and for $t=6$ the optimal code has length $N=14$ (the trivial length for this case is $\left.\binom{6}{2}=15\right)$.

Consider the following 3×8 quaternary matrix

$$
C^{(4)}=\left(\begin{array}{llllllll}
4 & 2 & 3 & 1 & 2 & 4 & 1 & 3 \\
1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \\
2 & 4 & 1 & 3 & 2 & 4 & 1 & 3
\end{array}\right)
$$

One can check that the columns of $C^{(4)}$ form a superimposed quaternary $(2,2)$-code of size 8 and length 3 . The concatenation of this code with the trivial $(2,2)$-code of size 4 and length $\binom{4}{2}=6$ leads to the binary $(2,2)$-code of size $t=8$ and length $N=6 \cdot 3=18$. Examining this code, one can see that there is a pair of rows, which are repeated three times in the given code. Obviously, we can remove two copies of each row, and get the binary (2,2)code of size $t=8$ and length $N=14$. Since $N(6,2,2)=14$, we have that $N(8,2,2)=N(7,2,2)=14$.

Definition 4. The Maximum Distance Separable code (MDS-code) with parameters (q, k, n) is a q-ary code of size $t=q^{k}$, length n and the Hamming distance $d=n-k+1$ [3].

Proposition 9. If $q^{k} \geq s+\ell$ and $n \geq s \ell(k-1)+1$, then any MDS-code with parameters (q, k, n) is a superimposed q-ary (s, ℓ)-code.

For any integer $\lambda \geq 1$ and a prime power $q \geq \lambda$ there exists an MDS-code with parameters ($q, \lambda+1, q+1$) (Reed-Solomon code). The concatenation of this code with the optimal binary superimposed code of size q leads to the following

Proposition 10. Let $s \geq 1, \ell \geq 1$ and $\lambda \geq 1$ be integers and $q \geq s \ell \lambda$ be a prime power. Then

$$
N\left(q^{\lambda+1}, s, \ell\right) \leq N(q, s, \ell)[s \ell \lambda+1]
$$

Table 1 gives several numerical values of upper bounds on $N(t, 2,2)$ calculated with the help of propositions 8 and 10 . For instance,

1. $N(16,2,2)=N\left(4^{2}, 2,2\right) \leq N(4,2,2) \cdot[4 \cdot 1+1] \leq 6 \cdot 5=30$;
2. $N(512,2,2)=N\left(8^{3}, 2,2\right) \leq N(8,2,2) \cdot[4 \cdot 2+1] \leq 14 \cdot 9=126$;

t	4	8	16	25	64	512	625	2^{12}	2^{16}	2^{20}
N	6	14	30	50	70	126	250	270	390	510

Table 1. Parameters of superimposed $(2,2)$-codes

3 On Constructions of List-Decoding Codes

For a set of codewords $\mathcal{C}(4)$ and a subset $\tau \subset[t]$ denote by $L(\tau, \mathcal{C}) \geq 0$ the number of indices $j \in[t] \backslash \tau$, such that the vector $\mathbf{x}(j)$ is not covered by $\mathrm{V}(\tau)$. Let $L_{s}(\mathcal{C})$ denote the maximum value of $L(\tau, \mathcal{C})$ over all $\tau \subset[t],|\tau|=s$. The number $L_{s}(\mathcal{C})$ is the maximum list-size of the list-decoding superimposed code of strength s (see definition 2).

Along with $L_{s}(\mathcal{C})$ we study the number $L_{s}^{*}(\mathcal{C})$, which is the average number of codewords covered by a random s-subset $\tau \subset[t]$:

$$
\begin{equation*}
L_{s}^{*}(\mathcal{C}) \triangleq \sum_{\substack{\tau \subset[t] \\ \mid \tau \|=s}} L(\tau, \mathcal{C}) /\binom{t}{s} \tag{7}
\end{equation*}
$$

Further we claculate value of L_{s}^{*} and give the upper bound on L_{s}, for binary superimposed codes, that are obtained from q-nary MDS codes by trival concatenation. Those codes were studied in $[1,6,7]$

We say that the concatenation is trival if q-nary symbols are replaced with the columns of the $(q \times q)$ identity matrix.

Theorem 1: For a binary superimposed code, obtained from (q, k, n) MDS code by trival concatenation,

$$
\begin{gather*}
L_{p}^{*}=q^{k} \frac{\left(\binom{q^{k}-1}{p}-C(p)\right)}{\binom{q^{k}}{p}} \tag{8}\\
C(p)=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} D(p, i)
\end{gather*}
$$

$$
\begin{gathered}
D(p, v)=\left\{\begin{array}{cc}
\binom{q^{k-v}(q-1)^{v}}{\left(A_{v}(v),\right.}, & \text { if } v \leq k ; \\
p
\end{array}\right), \\
\text { if } v>k .
\end{gathered}, \begin{gathered}
A_{v}(v)=(q-1) \sum_{j=0}^{k-1}(-1)^{j}\binom{v-1}{j} q^{k-j-1}
\end{gathered}
$$

Theorem 2: For a binary superimposed code, obtained from (q, k, n) MDS code by trival concatenation,

$$
\begin{equation*}
L(s) \leq \min \left\{s^{k}-s, q^{k}-\frac{n *(q-s) * q^{k-1}}{w}-s\right\}, \tag{9}
\end{equation*}
$$

where w is the greatest solution of the equatation

$$
\prod_{i=1}^{k-1}(w-i)=(n-1)(n-k+1)\left(\frac{q-s}{q}\right)^{k-1}
$$

Another construction of list-decoding superimposed codes based on the incidence of the finite sets was studied in [5].

References

[1] W.H. Kautz, R.C. Singleton, "Nonrandom Binary Superimposed Codes," IEEE Trans. Inform. Theory, 4 (1964), 363-377.
[2] R.S. Singleton, "Maximum Distance Q-Nary Codes," IEEE Trans. Inform. Theory, 2 (1964), 116-118.
[3] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland, 1983.
[4] A. D'yachkov, V. Rykov, "A Survey of Superimposed Code Theory," Problems of Control and Inform. Theory, 4 (1983), 229-242.
[5] P. Vilenkin, "On Constructions of List-Decoding Superimposed Codes," Proc. of ACCT-6, Pskov, Russia, 1998, 228-231.
[6] A. D'yachkov, A. Macula, V. Rykov, "New Constructions of Superimposed Codes," IEEE Trans. Inform. Theory, 1 (2000), 284-290.
[7] A. D'yachkov, A. Macula, V. Rykov, "New Applications and Results of Superimposed Code Theory Arising from the Potentialities of Molecular Biology," Numbers, Information and Complexity, pp. 265-282, Kluwer Academic Publishers, 2000.
[8] A. D'yachkov, A. Macula, D. Torney, P. Vilenkin, S. Yekhanin, "New Results in the Theory of Superimposed Codes: Part I," present volume.

[^0]: ${ }^{1}$ A. D'yachkov, P. Vilenkin and S. Yekhanin are with the Department of Probability Theory, Faculty of Mechanics \& Mathematics, Moscow State University, Russia (dyachkov@mech.math.msu.su, paul@vilenkin.dnttm.ru, gamov@cityline.ru). Their work is supported by the Russian Foundation of Basic Research, grant 98-01-00241
 ${ }^{2}$ A. Macula is with the Department of Mathematics, State University of New York College at Geneseo, USA (macula@geneseo.edu). His work is supported by NSF Grant DMS-9973252.
 ${ }^{3}$ D. Torney is with the Theoretical Division T10, Los Alamos National Laboratories, USA (dct@lanl.gov). His work is supported by the US Department of Energy.

[^1]: ${ }^{1}$ A. D'yachkov, P. Vilenkin and S. Yekhanin are with the Department of Probability Theory, Faculty of Mechanics \& Mathematics, Moscow State University, Russia (dyachkov@mech.math.msu.su, paul@vilenkin.dnttm.ru, gamov@cityline.ru). Their work is supported by the Russian Foundation of Basic Research, grant 98-01-00241
 ${ }^{2}$ A. Macula is with the Department of Mathematics, State University of New York, College at Geneseo, USA (macula@geneseo.edu). His work is supported by NSF Grant DMS-9973252.
 ${ }^{3}$ D. Torney is with the Theoretical Division T10, Los Alamos National Laboratories, USA (dct@lanl.gov). His work is supported by the US Department of Energy.

